导航菜单

​认识倒数教学设计一等奖

认识倒数教学设计一等奖

1、倒数的认识教学设计

教学目标:

(1)知识目标:通过计算、观察、概括,使学生理解倒数的意义,掌握求不同种类数的倒数的方法,并能发现一些规律。

(2)能力目标:通过引导学生自主探索学习,进一步培养学生的自主学习能力,提高学生观察、比较、抽象、归纳的能力。培养学生的分析、推理、判断等思维能力,发展学生的思维

image.png

(3)情感目标:提高学生学习数学的兴趣,培养学生独立探索精神和合作交流意识,并渗透“事物之间相互联系、相互依存”的辨证思想。

教学重点:倒数的意义和求法,理解倒数的意义,会求不同种类数的倒数。

教学难点:熟练正确的求不同种类数的倒数,发现不同种类数的倒数的一些特征。1、0的倒数,小数的倒数。

教学准备:写有数的纸片。

教学过程:

一、导入新课。

请同学们观察下面两组字:杏–呆,吴–吞。

师提问:你们发现了什么,能说说你们的发现吗?小组内说一说。然后让学生个别说。同学们给予评价。

学生:我们发现这两组字都是由相同的字构成的,都是上下结构。上下两部份交换位置就成了另一个新字。

师说:在数学中,有没有像这样的数字上下两部份交换位置成了另一个新的数,这样的两个数之间有什么联系呢?

学生:有,是分数,上面部份是分子,下面部份是分母。分数的分子和分母交换能成一个新的分数。比如:2/3和3/2、6/5和5/6。

师:这样的两个数我们给它们取个名叫互为倒数。(板书:倒数的认识)

二、新知探究。

(一)小组验证互为倒数的两个数的特点。

师:那好,我们就进行一个小小的比赛。我给大家30秒的时间,请你写出分子与分母交换了位置的两个数,看谁写得多。

师:你们刚才写的所有算式都有怎样的共同点?

学生:我们写的每组数的分子与分母的位置是调换了的。

师:请第一组用加、第二组用减、第三组和第四组用乘的方法验证刚才2/3和3/2、6/5和5/6,能发现什么规律?(分小组活动)

板书:第一组:3/2+2/3=9/6﹢4/6=13/6

6/5+5/6=36/30+25/30=61/30

第二组:3/2-2/3=9/6-4/6=5/6

6/5-5/6=36/30-25/30=11/30

第三组和第四组:3/2×2/3=16/5×5/6=1

师问:互为倒数的两个数相加、相减、相乘有何特点?

学生:互为倒数的两个数相加的和不相等,互为倒数的两个数相减的差也不相等,互为倒数的两个数相乘的结果都是1。

师:互为倒数的两个数的乘积是1,乘积是1的两个数互为倒数。(板书:倒数的概念)

指出:互为倒数的两个数分子分母互相颠倒,这样的两个数的乘积一定是1。比如:2/3和3/2互为倒数,2/3的倒数是3/2,3/2的倒数是2/3;6/5和5/6互为倒数……

2、试下面数的倒数。

2的倒数是0。2的倒数是0。25的倒数是

让学生说一说怎样求一个数的倒数,用什么方法能快速求出来?(引导学生把小数化成分数:0。2=1/5,想:0。2=1/5,1/5的倒数是5,所以0。2的倒数是5。0。25=1/4……然后再求它们的倒数)让尽可能多的学生说说它们是怎么互为倒数的。

明确:互为倒数的两个的分子分母互相颠倒,这样的两个数的乘积一定是1。

(二)课堂练习:求一个数的倒数。

1、质疑:互为倒数的两个数有什么特征?谁能举例说明什么是互为倒数。

2、师:完成教材P45“填一填”

5/87/462/310.8(补充)

让学生与同桌说一说自己的想法,知道求小数的倒数需先把小数化成分数。

3、讨论:0有倒数吗?学生交流。

板书:0和任何数相乘都不能得到1,所以0没有倒数。

4、完成P47课堂活动的对口令。

汇报时让学生说一说谁是谁的倒数。

(小结:刚才我们就学习了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)

5、出示判断:

(1)得数为1的两个数互为倒数。()

(2)因为9/4×4/9=1,所以9/4和4/9都是倒数。()

(3)互为倒数的两个数乘积一定是1。()

(4)因为1/3+2/3=1,所以1/3和2/3互为倒数。( )

(5)a是1/a的倒数,1/a是a的倒数。()

(6)a/b是b/a的倒数,b/a是a/b的倒数。()

6、探索求真分数和假分数的倒数的特点。

学生分小组讨论,把讨论的结果记录在本子上,然后小组让代表汇报。

师生共同小结:真分数的倒数一定是假分数。假分数(1除外)的倒数一定是真分数。

2、倒数的认识教学反思

在本节课的教学中,学生通过自学已经对倒数的意义有了初步的掌握。在引导过程中,学生很容易就归纳出倒数的意义,并能够自己举例子。学生在自学中对于特殊数“1”和“0”的倒数有些疑问,同学探究和交流,集体订正1的倒数是它本身,0则没有倒数!对于怎样求倒数的方法,通过练习检测,学生掌握的都非常好。这也说明学生已理解和清楚了倒数的意义。

对于这堂课的引导者,在教学中,身为一名数学教师,我的教学语言应该更加严谨。实施教学中应多给学生一些思维的空间,和发言的时间,作为年轻教师的我应该在教学中充分做到以学生为主,以学生的长远发展为切入点去充分的给予引导和点拨。同时,保证教学的良好实施又要求我在日后的备课中必须将教材研究透,并且还要从学生的思维去研究教法与学法。这样,才能做好学生数学学习中的良好引导,学生思维发展的初级阶段过程中正确的引路人。

3、倒数的认识教学反思

本节课的知识是在学习了学生掌握了整数乘法、分数加法和减法、分数乘法及运用等知识的基础上进行教学的,倒数的认识教学反思。倒数这部分内容属于分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则运算和相关的知识运用打下基础。

成功之处:

1.重点理解倒数的含义。在教学中通过出示几组乘积是1的四组算式,让学生观察发现其中的规律:两个因数的分子和分母交换了位置,由此得出乘积是1的两个数互为倒数,并指出3/8的倒数是8/3,而8/3的倒数是3/8,从而理解互为倒数的含义。在教学倒数的含义时还要注意两个数互为倒数的条件:一是乘积是1,二是仅限于两个数,为练习中出现的争论扫清障碍。

2.重点练习求小数和带分数的倒数方法。在例1的教学中,学生对于求一个数的倒数方法都非常容易理解,但是对于求小数和带分数的方法教材没有涉及,但是要进行补充,在后续的练习中往往容易出现类似的题目。如果没有预设到,学生就会在此知识点上出现问题,影响学习知识的效果。

不足之处:

学生对于练习题中的判断容易出错。例如:一个数的倒数一定比这个数小。通过这个题目要让学生知道一个数可以分为真分数和假分数,真分数的倒数却比这个数大,而假分数又包含两种情况:一是分子和分母相等的情况,另一种是分子比分母大的情况。分子比分母大的分数的倒数一定比这个数小,而分子和分母相等的分数的倒数等于这个分数。

再教设计:

对于判断题的练习要予以重视,由一题发散多题,以不变应万变。

4、倒数的认识教学设计

教学目标:

1. 通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。

2. 使学生经历倒数意义的概括过程,提高衙门观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。

3. 通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。

教学过程:

一、情境导入,引出问题

1. 谈话理解“互为”。

师:俗话说,在家靠父母,出门靠朋友,一个人在社会上除了亲人之外,也要有朋友,你们有自己的朋友吗?

让一名学生(甲)说出自己的好朋友是谁?(乙)

师:能用一句话表达两人之间的朋友关系吗?还可以怎么说?能说甲是朋友,乙是朋友吗?为什么?

(设计意图)学生对于互为两个字的理解比较难,是教学中的一个难点。在这里,我用你是我的朋友,我是你的朋友这一关系多次转化,在自然中创设情境,让学生有一种生活体验,让学生在生活情境中知道什么是“互为朋友”,这样调动了学生的积极性,让学生在不知不觉中理解了“互为”的含义,分散了教学的难点。

2. 游戏,按规律填空。

吞———吴呆———( ) 3/8 — — —( / )10/7 — — —( / )

(1 )学生观察填空,指名回答,并说出是怎么样想的。

(2 )师:你们能按照上面的规律再说出几组数吗?(学生举例,教师板书)

3. 学生观察板书的几组分数,看看每组中的两个数有什么特点?

同桌讨论交流,然后全班汇报每组中两个分数的特点,教师注意引导。(主要是分子、分母的数字特点和两个分数的乘积方面。)

4. 师:能根据每组中两个分数的特点,给这几组分数起一个合适的名字吗?

教师揭示课题:倒数的认识。

5. 师:看到这个课题,大家想提什么问题?

根据学生回答,选择板书。如:

(1 )什么是倒数?

(2 )怎么样求一个数的倒数?

(3 )认识倒数有什么作用?……

(设计意图)问题是数学的心脏,是学生探究的起点和动力,在谈话、游戏情境中引导学生发现问题,提出问题。

二、 合作探究、解决问题

1. 探究倒数的意义。

(1 )观察3/8 与8/3 ,说说哪两个数互为倒数?还可以怎么样说?

(2 )谁能说说10/7 与7/10 中谁和谁互为倒数?也可以怎么样说?

(3 )小组讨论,什么是倒数?

学生独立思考后,组内交流。

全班汇报,教师根据学生的汇报点拨引导。学生可能有的答案是:

A :分子、分母相互调换位置的两个数叫做互为倒数。

B :乘积是1 的两个数叫做互为倒数。

师生共同归纳倒数的意义:乘积是1 的两个数叫做互为倒数。(教师板书)

2. 探究求倒数的方法。

(1 )学习例1 :写出7/8 、5/2 的倒数。

A :学生试写,教师巡视,提醒书写格式。

B :指名回答,教师板书:7/8 的倒数是8/7 ,5/2 的倒数是2/5 。

师:互为倒数的两个数相等吗?怎么样表示它的结果?也可用—(破折号)表示。

C :学生交流求一个分数倒数的方法。

(2 )师:同学们已经会求一个分数的倒数了。想一想,我们还学过哪些数?(整数、小数、带分数),那么怎么样求整数、小数、带分数的倒数呢?选择一种,在小组内探究。

A :学生选择一种研究,教师巡视指导。

B :学生交流汇报,教师分别板书一例。

C :引导学生概括求倒数的方法。

(3 )教师引导质疑:0 有没有倒数?为什么?学生讨论释疑。

1 ×( )=1 ,所以1 的倒数是1 。而0 ×( )=1 呢?

1 的倒数是它本身,0 没有倒数。

求一个数(0 除外)的倒数,只要把这个数的分子、分母互相交换位置就行了。

(设计意图)充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。

三、巩固联系、拓展深化。

1. 下面哪两个数是互为倒数。

4/3 , 7/6 , 8 , 6/7 , 3/4 , 1/8

2. 写出下面各数的倒数。

4/11 , 16/9 , 35 , 15/8 , 1/5

学生在课练本上写出这些数的倒数,指名回答,并说出是怎么样求的,集体评价。

3. 争当小法官,明察秋毫。

(1 )1 的倒数是1 。(2 )所有的数都有倒数。

(3 )3/4 是倒数。(4 )A 的倒数是1/A 。

(5 )因为0.5 ×2=1 ,所以0.5 与2 互为倒数。

(6 )7/5 的倒数是7/2 。

(7 )真分数的倒数都大于1 。 (8 )假分数的倒数都小于1 。

(9 )因为8 -7=1 ,3 ÷3=1 ,所以8 和7 ,3 和3 是互为倒数。

4. 填空。

3/4 ×( )=1 7 ×( )=1

2/5 ×( )= ( )×4= 5/4 ×( )=0.5 ×( )=1

5. 游戏:找朋友。

师:刚才我们在上课时各自说出了自己的好朋友,老师觉得你的朋友太少了,现在我们就在课堂上再找几个朋友吧,愿意吗?

一名学生说出一个数,谁能又对又快地说出这个数的倒数,谁就和这名同学互为好朋友。

(设计意图)多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。

四、总结反思、评价体验

这节课你们有什么收获?还有什么疑问?

(设计意图)帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。

五、布置作业。

《倒数的认识》教学反思:

本节课一开始创设“让学生找朋友”的情境,通过此活动帮助学生理解“互为”的含义,从而为构建新知扫清语言理解障碍。并在课中多次强调表达的准确性,引导学生在与他人的交流中,运用数学语言清晰地、有条理地表述自己的思考过程,进行讨论与质疑。

本节课我采用了发现式教学法。教师只是通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中去,让学生自己组织学习材料,给学生提供放手的思维空间,并尊重学生的自主性,允许学生在探索新知中犯错误,并在修正错误中体会成功。以平等宽容的态度,激起学生的探究热情。特别是在探究倒数的意义与求倒数的方法时,放手让学生自己去探索,去观察,去归纳,去总结。此环节的设计,是为了引导学生在仔细观察数据特征的基础上,细心体会分子与分母的位置关系,尝试发现求倒数的方法。设计力求让学生成为学习的主人,做到“一切真理都要由学生自己获得或由他们重新发现,至少由他们重建”。

“倒数”的学习适于学生展开观察、比较、交流、归纳等教学活动。为了更好地指导学法,我还采用小组合作形式组织教学。这一方面可以让学生尝试发现,体验到创造的过程;另一方面也可以增强学生的合作意识,让学生在小组交流、全班交流过程中,相互学习、相互借鉴,逐步完成对“倒数”的认识,有时还受同学启发,迸发出智慧的火花。并且充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。

在课后的巩固练习中,我设计了“争当小法官,明察秋毫”、“填空”、“游戏:找朋友”等题型,通过这些多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。

最后在全课的小结中再次提出问题,总结反思,帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。

5、倒数的认识教学设计

倒数的认识教学设计

作为一位优秀的人民教师,时常需要用到教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。那要怎么写好教学设计呢?下面是小编为大家整理的倒数的认识教学设计,仅供参考,希望能够帮助到大家。

教材分析:

教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。

教学目标:

(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。

(2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。

(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。

教学重点:

知道倒数的意义和会求一个数的倒数

教学难点:

1、0的倒数的求法。

教具准备:

课件

教学过程:

一、课前谈话:

师:今天老师很高兴和大家上课,所以上课前老师想和大家互相成为好朋友。

生:好!

师:那你想怎样表述我们的关系?

生:我们双方面互为朋友,也可以说成“老师是你的朋友”,“你是老师的朋友”。这样学生对马上接触到的“互为倒数”就比较容易理解了。

二、揭示倒数的意义

师:前面我们学习了分数乘法,请同学们计算几道题。

师:观察它们有什么共同的特点?生:乘积都是1!

师:对,今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?

生:(齐)能!

师:那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家一定的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的类型。

准备好了吗?开始?

师:时间到,停!谁愿意把你写的念出来,和大家共同分享?

(生读,师有选择的板书在黑板上。)

师:这么短的时间内就能写出这么多乘积是1的两个数,不错。

师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?

生:无数个。出示例7。

师:那请你们来帮帮忙,找出乘积是1的两个数。

(学生个别回答)

师:你们找的这些与之前写的所有算式都有怎样的共同点?

生:乘积都是1。

师:你知道吗?揭示意义】教师板书:乘积是1的两个数叫做互为倒数。生齐读。

师:黑板上所写的两个数的积都是1,所以他们互为倒数。比如3/8和8/3的乘积是1,我们就说3/8和8/3互为倒数。(师板书3/8和8/3互为倒数。)

师:3/8和8/3互为倒数!我们还可以怎么说呢。

生:3/8的倒数是8/3;8/3的倒数是3/8。

师:为什么乘积是1的两个数不直接说是倒数,而要说“互为”倒数呢?“互为”是什么意思呢?你是怎样理解这两个字?

生1:“互为”是指两个数的关系。

生2:“互为”说明这两个数的关系是相互依存的。

师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。以前我们学过这种两数间相互依存关系的知识吗?

师:2/5和5/2的积是1,我们就说?(生齐说)

师:7/10和10/7的乘积是1,这两个数的关系可以怎么说?请您告诉你的同桌。

(小结:刚才我们就认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)

探索求一个倒数的方法

师:非常好!我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的.这些例子。

生1:互为倒数的两个数分子和分母调换了位置。

师:同意吗?

生:同意。

师:根据这一特点你能写出一个数的倒数吗?

生:能。

师:试一试!

师在黑板上出示3/57/2,写出它们的倒数。

师:那5(0.1)的倒数是什么?它可是没有分子和分母呀?还有1又1/8呢?

生:把5看成是分母是1的分数,再把分子分母调换位置。

求小数的倒数的方法:小数求带分数的倒数的方法:带分数。

三、分数倒数。倒数。假分数

师:那1的倒数是几呢?(学生很快就说出来了,并说明了理由)

0的倒数呢?

师:为什么?

生1:因为0和任何数相乘都得0,不可能得1。

师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3?把这此分数的分子分母调换位置后……(生齐:分母就为0了,而分母不可以为0.)师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

生1:求一个数的倒数,只要把分子分母调换位置。

生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。

生3:1的倒数是1,0没有倒数。

(生齐读求一个数倒数的方法。)

四、巩固练习

1、打开书,阅读课本P34,把你认为重要的划起来。

2、完成练一练。

(1)学生在书上完成,教师巡视,请同学板演。注意学生的书写格式是否正确。

(2)发现一学生书写有误,与该生交流。

(3)用展台展示该生的错误。

师:这样写可以吗?(4/11=11/4)

生:不可以!

师:为什么?

生1:比如4/11的倒数是11/4,4/11是真分数,11/4另一个是假分数,它们是不可能相等的。

(4)师:对,互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。

3、小游戏:同桌互相出一题,对方说出答案。

4、先说说下面每组数的倒数,再看看你能发现什么?

(1)3/4的倒数是()(2)9/7的倒数是()

2/5的倒数是()10/3的倒数是()

4/7的倒数是()6/5的倒数是()

(3)1/3的倒数是()(4)3的倒数是()

1/10的倒数是()9的倒数是()

1/13的倒数是()14的倒数是()

由学生说出各数的倒数。然后

师:请你仔细观察,看能从中发现什么,发现得越多越好。

师:小组间可以先互相说一说。

汇报:

生1:我从第一组中发现真分数的倒数都是假分数。

生2:我从第二组中发现假分数的倒数是真分数或者假分数。

生3:真分数的倒数都小于1,假分数的倒数大于1。假分数的倒数也可能等于1。

生4:我发现分子是1的分数。

4、填空:

7×()=15/2×()=()×3又2/3=0.17×()=1

五、课堂小结

1、小结:今天我们学习了什么?

2、学了倒数有什么用呢?

大家课后可去思考一下。

板书设计

倒数的认识

乘积是1的两个数互为倒数1的倒数是1.0没有倒数。

0.1的倒数105的倒数是51又1/8的倒数是8/9。

(0.1=1/10)(5=5/1)(1又1/8=9/8)

求小数的倒数的方法:求带分数的倒数的方法:带分数分数假分数倒数。倒数。

6、倒数的认识教学反思

本节课我根据课程标准和教学内容设置了两个学习目标,并为每一个学习目标的完成,设计练习题,教学评一体。题型的设计紧扣目标,能及时检测和反馈学生学习和掌握的情况。例如,目标一是理解倒数的意义。

首先让学生在口算练习中观察、发现和总结出倒数的意义。为了加深学生对倒数意义的理解和检测学生的掌握情况,紧跟着我设计了三道题目。

第1题是判断,在三道判断题目中再次加深对“乘积是1”“两个数”“互为倒数”的理解,从而真正的明白倒数的意义。

第2题是口答,目的是让学生能意识到乘积是1的两个数互为倒数,利用倒数的意义去解决问题。

第3题,利用倒数的意义,找出哪两个数互为倒数,等于还是对倒数意义的运用的训练。那么在连续三种题型的中,想必孩子们对什么是倒数应该是理解的已是非常的到位了,下面进行目标二的学习,掌握求一个数的'倒数的方法。对于目标二的学习,我是直接采用让学生直接写出下面几个数的倒数的,因为我相信倒数意义只要理解到位,那么求出一个数的倒数应该没问题,这一环节的关键是要让学生们总结出求一个数的倒数的方法,要求让他们先相互说一说,这是这一环节的重点。

总结出求一个分数的倒数后,当然还要继续验证也可以说还要解决不同类型数的倒数,比如说小数的倒数怎么做,带分数的倒数怎么做,既是对分数求倒数方法的验证也是一个新问题的解决,让孩子们根据分数与小数、带分数和整数的互化,来解决这个问题。最后是对整节课回顾与总结,帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。

总的来说,本节课不管从问题的设置还是练习题的设计上,对孩子们的思维训练都具有一定的连续性、跳跃性。教学设计我非常满意,课堂效果也非常的精彩。

7、倒数的认识教学反思

“倒数的认识”一课是学习分数除法的基础。这节课的主要目标是让学生认识倒数的意义,知道什么是倒数,并会求一个数的倒数。这节课我在上课时,课堂气氛比较活跃,学生知识掌握得较好,通过这节课的实际教学,结合新课标,给了我不少启示。

第一,从联系学生熟悉的生活情景入手,让学生用简单的话介绍一下自己的同桌,学生通过实际的对话“我是…的同桌”、“…是我的同桌”、“…和…互为同桌”,让学生从直观上理解“互为”同桌的意思,分散了教学难点,为学习“互为倒数”做了一个铺垫。而且课堂气氛也活跃了,融洽了师生关系。

第二,相信学生。给学生独立思考的时间,让学生自己自学课本,通过书中的算式,自己发现什么叫做倒数;同时也给学生合作学习的机会,探求“整数的倒数怎么求”、“0和1有没有倒数”、“小数有没有倒数”时,让学生小组合作学习,互相交流,得出结论,能够群策群力地解决问题。

第三,练习的设计多种多样,我不仅设计了关于倒数的基础练习,也有让学生“跳一跳,就能摘到苹果”的提高题,让学生在练习中巩固,在练习中提高。最后,我出示了一副回文对联“客上天然居,居然天上客;僧过大佛寺,寺佛大过僧。”让学生体会到数学之美。

8、倒数的认识教学反思

本节课是一节概念课,是陈述性知识,放在这个单元是起到了承上启下作用,是为了衔接分数乘法和分数除法计算法则。其目的就是为除以一个数等于乘这个数的倒数做铺垫,在这个问题上我一直认为:为什么要乘这个数的倒数这个问题要说清楚,否则分数除法的计算法则不好理解。

教学从寻找乘积是1的两个分数开始。在给出的8个分数中,学生能够找到三对乘积是1的分数。这项貌似游戏的活动凸显了“倒数”是乘积为1的两个数之间的关系,这正是建立倒数概念必须充分注意的内涵。教材在三对乘积是1的分数基础上,指出“乘积是1的两个数互为倒数”。学生准确理解这句话的意思,不仅要知道互成“倒数”的两个数的乘积是1,还要明白两个数是“互为倒数”的。教材里三个卡通的交流,说的都是两个分数的乘积是1。下面的文字叙述强调两个数“互为倒数”,还以3/8和8/3为例,引导学生体会“甲数是乙数的倒数,乙数也是甲数的倒数”。

求已知数的倒数分三个层次教学:先求3/5、2/3等分数的倒数,然后求5、1等整数的倒数,最后是0没有倒数。在第一个层次里,要求学生观察互为倒数的两个分数,发现它们的分子、分母刚好互换位置,一方面进一步体会互为倒数的两个数的乘积是1,另一方面找到了写出一个数的倒数的方法。第二个层次写出整数的倒数。可以从概念出发,寻找与这个整数相乘等于1的数。如果把整数看成分母是1的分数,就能像分数那样直接写出它的倒数。第三个层次理解0没有倒数,并要求作出相应的解释。这是因为0和任何数相乘的积都是0,不存在与0相乘能够得到1的数。

倒数的意义就是一句话:乘积是1的两个数互为倒数。但是对于这句话的理解是有着比较丰富的内涵的,这也就是概念内涵的体现。这节课的教学流程分为这样几个基本块面:首先通过例题7提出的问题——给出倒数的含义——分层突击理解倒数含义——出示形式上的经典错例(特别是小数的倒数)——处理1和0的问题(这是本节课的难点)。

9、倒数的认识教学反思

“倒数的认识”是在学习了分数乘法的基础上进行教学的,主要是为后面学习分数除法做准备。这一课时的内容主要是让学生理解倒数的意义和会求一个数的倒数,学生只有学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。

因考虑本节课的教学难度不太,所以在设计本课的教学时,我采取了学生自主学习为主的教学方式,首先创设了一个问题情境引入课题,让学生带着问题进入课堂,后出示自学提纲,让学生根据提示自学课本内容,给学生充分独立思考的机会,然后将自学所得在小组内交流,最后在进行全班交流。整个教学过程充分体现学生学习的主动性和积极性,让学生在自主探索与交流合作中再现知识发生的过程,提高学生的观察分析和概括归纳的能力,实现知识技能与学生智能的同步发展。反思整个教学过程.

1、创设问题情境,激发学生的学习积极性。课始,我以一道和本课内容相关的智力题引入教学,很快就激起了学生的探究欲望,在学生努力思考而没有答案的情况下,我提示了课题,使学生的学习的探究兴趣达到了最高点,大大地提高了教学效果。

2、给学生充分合作学习的时间。随着新课改的实施,新的教学理念冲击着我们的课堂,学生是课堂的主人,课堂上要充分发挥学生学习的积极性和主动性的思想,使我们不得不退出“主角”地位,努力当好 “配角”,在教学本课时,我努力扮演好自己的角色,给学生充分的自主学习和自主交流的时间,让学生在小组合作中,互相学习、互相交流,在合作中交流、在合作中提高、在合作中解决困惑,在碰撞中体验到成功的快乐。通过合作学习使学生的语言表达能力、思维能力、与同伴沟通的能力都得到了很大的提高,使学生的主人翁地位得以体现。

10、倒数的认识教学反思

今天教学倒数的认识后,我的感触很多。以往教学这部分内容,我是直接让学生写出结果是1的算式,再从学生说的算式中把乘积是1的算式板演在黑板上,再让学生观察算式的特点,然后再让学生理解互为的意思,最后总结出倒数的意义。

现在想起来有一种牵着学生鼻子走的感觉。通过看杂志和其他教学刊物,我重新设计了教案。我觉得这样设计才是让学生自己通过观察、比较、归纳总结出倒数的意义,是学生自己通过参与整个学习过程后有了真正的收获。特别是通过比赛的形式激发学生的学习兴趣,学生发现了算式的特点,并让学生举例后发现,有这样特点的算式是写不完的。

然后让学生仿照老师的样子,通过例子说倒数的意义,并强调说倒数的关键字词。这对学生掌握概念是非常必要的。当学生很高兴的自认为是掌握了求一个数的倒数的方法时,我有给学生设计了障碍:怎样求带分数、小数和整数的倒数。虽然教材新授内容没有这些知识,但在以后的练习中出现了。我把它提到前面来,大家一起研究。我觉得很有必要。这样,使学生避免把带分数的倒数也用把分子分母颠倒位置的方法来求。这样就不会给学生的认知造成误导。

学生在知道了分数、带分数、整数、小数的求倒数的方法以后,我又提出是不是所有的数都有倒数?使学生想到0的倒数问题。以前我是直接问学生“0“有倒数吗?好像暗示学生”0“没有倒数。改换成今天这样问,学生通过自己思考,得出两种答案,”0“有倒数,另一种是”0“没有倒数。有了分歧意见,又一次把学生带入了问题王国。学生分别发表自己的见解。最后,大家一致认为”0“没有倒数。因为“0”不能做除数,也就是0不能作分母。我觉得这节课的教学比以往教学有了本质的转变,就是发挥了学生的主体作用。

11、倒数的认识教学设计

一、创设情境、导入新课。

1、课件出示:吞---吴干---士杏---呆。

2、请同桌互相交流一下,找一找下面文字的构成有什么规律吗?

3、学生汇报。

4、同学们观察的非常仔细,这种现象在数学中也有,今天这堂课我们就来研究倒数的知识。(板书课题:倒数的认识)

二、出示学习目标

1、能够理解和掌握倒数的意义。

2、学习求一个数的倒数的方法,能正确地求出一个数的倒数。

三、探究新知识

1、课件出示例1的算式,开展小组活动:算一算,找一找,这组算式有什么特点?

2、小组汇报交流。(通过计算,发现每组两个数的乘积都是1,还发现了相乘的两个分数的分子和分母的位置是颠倒的)

3、同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,也发现了每组两个数的乘积都是1,我们现在就可以得出倒数的定义了:乘积是1的两个数互为倒数。(板书)

4、提问“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。

5、强调“两个数”“乘积是1”

6、出示0.4×2.5=1,让学生说一说0.4和2.5可不可以说互为倒数。

7、随堂练习:判断:

(1)得数是1的两个数叫做互为倒数。

(2)因为10×1/10=1,所以10是倒数,1/10是倒数。

(3)因为1/4+3/4=1,所以1/4是3/4的倒数。

8、出示例题2,找一找哪两个数互为倒数?再说一说你是怎么找的?

9、以小组为单位进行讨论交流。

10、分组汇报:

第一种方法:看两个分数的乘积是不是1。

第二种方法:看两个分数的分子与分母是否分别颠倒了位置。

哪一种方法比较快?

11、观察书中的找倒数的方法,强调:3/5的倒数是5/3,不能用等号相连。

我们刚才知道了真分数、假分数和整数找倒数的方法:还有一些数找倒数的方法我们没有归纳。请同学们想一想下面的数怎么找倒数?

1、真分数、假分数。

2、整数

3、小数

4、带分数(板书)

12、例2中还有哪些数没有找到倒数?

13、提问:1和0有没有倒数?如果有,是多少?(小组讨论、汇报。)

四、巩固练习

我们现在应用今天学习的知识解决一些问题。

五、课堂总结。

板书设计成知识树。

12、倒数的认识教学反思

《倒数的认识》是在学习了分数乘法的基础上进行教学的,主要是为后面学习分数除法做准备。这一课时的内容主要是让学生理解倒数的意义和会求一个数的倒数,学生只有学好这部分知识,才能更好地掌握后面的分数除法的计算和解决实际问题。《倒数的认识》这一课的核心内容是“倒数的意义和求法”。“倒数的意义”属于概念的教学,我认为,只有让学生关注基础知识本身,让学生在深入剖析“倒数的意义”的过程中,学会数学思考,体会解决问题所带来的成功体验,才能使学习真正成为学生的.需要。本节课的教学难度不大,但是因为学生基础太差,所以我在设计教学时力求所有的学生能听得懂,学得进去,尽量引导学生能在交流合作中再现知识发生的过程,提高学生的观察分析和概括归纳的能力。

本节课的优点:

1、复习题合理,紧扣这节课的学习内容,为这节课的学习做了很好的铺垫。

2、学生能深入了解倒数的意义。我出示例题,让学生通过观察、计算等方法使学生明确“互为倒数的两个数的乘积是1”、“倒数的两个数只是把分子和分母的位置进行调换”、更让我高兴的是学生能注意到“倒数是相互依存的”。抓住学生的这一发现,我引导他们很快就总结出了倒数的概念——乘积是1的两个数叫做互为倒数。

3、求一个数的倒数的方法的教学合理,知识构建全面,层层深入。学生开始是学习求整数、分数的学习方法,接着学习求小数倒数的方法,进一步学习两个特例1和0。面对特殊的0和1这两个数时,学生们出现了小小的“争执”。有人认为:“0和1有倒数。”有人认为:“0和1没有倒数。”对于学生的“争执”我没有直接介入,而是引导他们互相说说自己的理由,在他们的交流中,学生们达成了一致的认识:0没有倒数,1的倒数是它本身。

4、丰富练习的形式。在充分利用教材的练习同时,我还适当地补充了练习的内容,使学生在练习中巩固,在练习提高。

本节课的不足:

1、在教学倒数的定义时,对于倒数的相互关系教学不够深入,应该让学生多说,或通过找朋友的方式加深理解。

2、时间掌控不那么理解,导致后面几道练习没有时间完成。

13、倒数的认识教学设计

教学内容:

数学第十一册19页----倒数的认识。

教学目标:

(1)知识目标:理解倒数的意义,掌握求倒数的方法。

(2)能力目标:会求倒数,提高学生观察、比较、抽象、概括以及合作学习、口头表达的能力。

(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯和合作的意识。

教学重点:

理解倒数的意义和怎样求一个数的倒数。

教学难点:

正确理解倒数的意义及0为何没有倒数。

一、游戏导入

教师:我知道同学们特别喜欢做游戏。今天我们一起做个游戏。这个游戏是这样的。如果我说1、2,大家就说2、1。那我说1、2、3,大家该怎么说?好!游戏正式开始。喜欢!我教育你!我吃西瓜!我打篮球!谁能说一说这个游戏的规则是什么?在数学当中,我们还可以怎样玩这个游戏?继续玩,我说分数,大家倒过来说。3/8、15/7、1/80、3(板书)

二、探究意义

1.找特点

师:请同学们观察黑板上四组数都有什么特点。

(生:分子、分母互相颠倒 )

师:请同学们把每一组中的两个数相乘,看乘积是多少?

(生:每一组中的两个数乘积都是1 )师及时板书

师:谁还能很快说出乘积是1的两个数吗?

(生回答)

师:同学们说得这么快一定找到了窍门,把你找到的窍门跟同学门说说好吗?

(生:两个数分子分母颠倒位置乘积是1)

师:那么乘积是1 的两个数数学给它起个什么名呢?

(生回答,师板书:乘积是1 的两个数叫互为倒数)

师:在这个概念中你认为哪个词比较重要?让学生自由说出自己的想法。

重点讲解“互为”的意思,就是互相是的意思。例如:

3/8×8/3=1 我们就说3/8是8/3的倒数,或者说3/8的倒数是3/8,也可以说8/3和3/8互为倒数。而不能说8/3的倒数,或3/8是倒数。

师:谁来把黑板上的后三组数仿照老师刚才叙述的来说一遍,用上“因为”“所以”一词。

(指名叙述)

师:根据同学们的叙述,我们可以看出倒数不是指某一个数,而是指两个数相互依存的关系,是相对两个数而言,不能孤立的说某一个数是倒数。

三、探究求倒数的方法。

师:现在我们已经理解了倒数的意义,那么怎样求一个数的倒数呢?继续观察黑板上的四组数,看互为倒数的两个数有什么特点,(分子,分母调换了位置)根据这个规律我们试着求下面几个数的倒数。

出示:3/5 7/2 8/6 5/12 10/4

(指名回答师板书)

师:你们是怎么找出每个数的倒数的?

(说自己的方法)

师:除了这些分数外我们还学过哪些数?(整数、小数、带分数)怎样求它们的倒数呢?求同学们试着求下面书的倒数。

出示:6 0.5 2 7/8 1

(生回答,师板书)并说说你是怎样求的?

师:是不是所有的数都有倒数呢?同桌讨论

0为什么没有倒数?(0和任何数相乘都不得1)

师:通过同学们的练习,谁来总结求一个数的倒数的方法?

(生总结,师板书)

四、小结并揭示课题

同学们我们今天重点认识了什么?(板书课题:倒数的认识)你们在这节课都学会了什么?下面老师想知道你们是否真正的掌握了没有,所以老师要考考你们,。

五、巩固练习。

1、填空

1、乘积是()的两个数叫()倒数。

2、因为7/15 x 15/7 =1 所以7/15和15/7( )

3、 5的倒数是( )。 0.2的倒数是( )。

4、()的倒数是它本身。()没有倒数。

5、8×()=1 0.25×()= 1

()×2/3=1 7/2×( )=( )×8=( )×0.15 =1

2、当把小医生。

1、得数是1的两个数叫互为倒数。()

2a是一个整数,它的倒数一定是 1/a 。()

3、因为2/3×3/2=1,所以2/3是倒数。()

4、1的倒数是1,所以0的倒数是0。()

5、真分数的倒数都大于1。()

6、2.5和0.4 互为倒数。()

7、任何真分数的倒数都是假分数。()

8、任何假分数的倒数都是真分数。()

3、面各数的倒数

2.5 4 1/8 2 6/7 0.12

4、列式计算

1、7/6加上它的倒数的和乘2/3,积是多少?

2、 1减去它的倒数后除以0.12,商是多少?

3、已知A×3/2=B×3/5,(A、B都是不为0的数)

求A、B的大小

六、教学反思:

倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。

“倒数的认识”这一课的核心内容是“倒数的意义和求法”。“倒数的意义”属于概念的教学,我认为,只有让学生关注基础知识本身,让学生在深入剖析“倒数的意义”的过程中,学会数学思考,体会解决问题所带来的成功体验,才能使学习真正成为学生的需要。“倒数的求法”中求一个小数或带分数的倒数学生可能有些困难。

今天教学倒数的认识后,我的感触很多。以往教学这部分内容,我是直接让学生写出结果是1的算式,再从学生说的算式中把乘积是1的算式板演在黑板上,再让学生观察算式的特点,然后再让学生理解互为的意思,最后总结出倒数的意义。现在想起来有一种牵着学生鼻子走的感觉。通过新课标理论的学习,我重新设计了教案。我觉得这样设计才是让学生自己通过观察、比较、归纳总结出倒数的意义,是学生自己通过参与整个学习过程后有了真正的收获。特别是通过游戏的形式激发学生的学习兴趣,学生发现了算式的特点,并让学生举例后发现,有这样特点的算式是写不完的。然后让学生仿照老师的样子,通过例子说倒数的意义,并强调说倒数的关键字词。这对学生掌握概念是非常必要的。当学生很高兴的自认为是掌握了求一个数的倒数的方法时,我又给学生设计了障碍:怎样求带分数、小数和整数的倒数。虽然教材新授内容没有这些知识,但在以后的练习中出现了。我把它提到前面来,大家一起研究。我觉得很有必要。这样,使学生避免把带分数的倒数也用把分子分母颠倒位置的方法来求。这样就不会给学生的认知造成误导。学生在知道了分数、带分数、整数、小数的求倒数的方法以后,我又提出是不是所有的数都有倒数么?使学生想到0的倒数问题。以前我是直接问学生“0“有倒数吗?好像暗示学生”0“没有倒数。改换成今天这样问,学生通过自己思考,得出两种答案,”0“有倒数,另一种是”0“没有倒数。有了分歧意见,又一次把学生带入了问题王国。学生分别发表自己的见解。最后,大家一致认为”0“没有倒数。因为“0”和任何数相乘都不等于1,也就是0不能作分母。我觉得这节课的教学比以往教学有了本质的转变,就是发挥了学生的主体作用。

14、倒数的认识教学设计

教材分析:

这部分内容是在学历了分数乘法的基础上教学的,主要为后面学习分数除法做准备,因为一个数除以分数的计算方法,归结为乘这个数的倒数。这部分内容通过两个例题,主要教学倒数的意义和求倒数的方法。

设计理念:

本课强调从学生的学习兴趣,生活经验和认知水平出发,通过体验、实践、参与、交流和合作方式,让学生在合作学习的过程中,学会交流,相互评价,亲历知识的建构过程。在求一个数的倒数时,让学生先学后教,激发学习热情,并培养学生观察、归纳、推理和概括的能力。

教学目标:

使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

能力目标:

培养学生观察、归纳、猜想、推理和概括的能力。

情感目标:

提供适当的问题情境,激发学生的学习兴趣和学习热情。让学生体验探索中成功的快乐,培养学生的创新意识和科学精神。

教学重点:

使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

教学难点:

使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

教学过程:

一、课前谈话突破难点

1、谈话——蕴含“两个”,突破“互为”

师:老师也愿和六(1)班的同学成为朋友,你们愿意吗?(愿意)那老师就是你们的…(朋友),你们是老师的…(朋友)。你们和老师互为朋友。(指板书:互为)

二、导入揭题,引导质疑

师:其实在我们的数学中也有类似的情况。今天这节课就让我们一起来发现数学中的类似问题。揭题——(板书:倒数的认识)

师:看到“倒数”这个数学新名词,你的脑子里产生哪些问题。

预设:什么是倒数?怎样求倒数?……

这节课一起来探究这些问题?

三、创设活动情景,理解概念——“倒数是什么”

师:我们刚刚研究了分数乘法,老师想了解大家掌握的怎么样?请看计算。

1、在分类中理解“是什么”

①5/8×8/5②0.25×4③3/4+1/4

④1.6—3/5⑤13/7×7/13⑥3/2×6/5×5/9

计算后你有什么发现?

师:如果请你将这六个算式分成两类,你准备怎么分?

(学生汇报:乘积是1。)[适当处板书:乘积是1]

归纳总结:分类的标准不同,得到的答案也不同,今天我们就研究这一类的算式。

师:这三个算式有什么共同的特征吗?

预设:乘积是1。

2、举例感悟“怎么做”

师:你还能举出这样的例子吗?

还能举出与这些算式不同的例子吗?还能举出不同的算式吗?

归纳总结:像刚才举的这些例子,他们都有一个共同的特点!(乘积是1)在数学上“乘积是1的两个数互为倒数”。如5/8×8/5=1,我们就可以说5/8和8/5互为倒数,还可以怎么说?如我们表述朋友的关系。

5/8倒数是8/5,8/5倒数是5/8。

师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

②0.25×4这两个数的关系可以怎么说?请您告诉你的同桌。

(学生活动)

⑤13/7×7/13

3、在思辨中深入理解

师:能说3/4和1/4互为倒数吗?为什么?

师:能说3/2、6/5和5/9互为倒数吗?为什么?

四、运用概念,探究方法——“怎样求倒数”

过渡:大家对倒数理解的很不错,那么我给你一个数你能找出它的倒数吗?

(投影,出示例2)

1、求下面各数的倒数

3/5267/20。610。250

学生尝试。

回报交流。

师:这组数中,你最喜欢求哪些数的倒数?为什么?

预设:

生1:我最喜欢求分数的倒数,因为把分数的分子、分母调换位置,它们的乘积就是1。很容易,所以我喜欢求。

生2:我最喜欢求1的倒数,因为1的倒数可以写成分数,分子、分母调换位置还是,1的倒数就是1。很有趣,所以我喜欢求1的倒数。生:进行计算。

师:这组数中,你最不喜欢哪个数的倒数?

预设:

生1:我最不喜欢求0的倒数,因为0如果写成分数,要是调换分子、分母的位置就是,0不能作分母(0不能作除数)。0好像没有倒数。

生2:再说0乘任何数都等于0,也不等于1呀,0肯定没有倒数。

师:那你是怎样求26的倒数的呢?

你是怎样求一个小数的倒数的呢?

归纳总结:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

生1:求一个数的倒数,只要把分子分母调换位置。

2、强调书写格式

师:刚才老师看到有学生是这样写的,可以吗?(3/5=5/3)

归纳总结:互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。

先说说下面每组数的倒数,再看看你能发现什么?

(1)3/4的倒数是()(2)9/7的倒数是()

2/5的倒数是()10/3的倒数是()

4/7的倒数是()6/5的倒数是()

(3)1/3的倒数是()(4)3的倒数是()

1/10的倒数是()9的倒数是(

nbsp;1/13的倒数是()14的倒数是()

由学生说出各数的倒数。

师:请你仔细观察,看能从中发现什么,发现得越多越好。

师:小组间可以先互相说一说。

汇报:

预设:

生1:我从第一组中发现真分数的倒数都是假分数。

生2:我从第二组中发现假分数的倒数是真分数或者假分数。

生3:真分数的倒数都小于1,假分数的倒数大于1。

3、填空:

7×()=15/2×()=()×0.25=0.17×()=1

15、倒数的认识教学设计

教材分析:

教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。

教学目标:

(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。

(2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。

(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。

教学重点:知道倒数的意义和会求一个数的倒数

教学难点:1、0的倒数的求法。

教具准备:课件

教学过程:

一、课前谈话:

师:今天老师很高兴和大家上课,所以上课前老师想和大家互相成为好朋友。

生:好!

师:那你想怎样表述我们的关系?

生: 我们双方面互为朋友,也可以说成“老师是你的朋友”,“你是老师的朋友”。 这样学生对马上接触到的“互为倒数”就比较容易理解了。

二、揭示倒数的意义

师:前面我们学习了分数乘法,请同学们计算几道题。 师:观察它们有什么共同的特点? 生:乘积都是1!??

师:对,今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?

生:(齐)能!

师:那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家一定的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的类型。

准备好了吗?开始??

师:时间到,停!谁愿意把你写的念出来,和大家共同分享?

(生读,师有选择的板书在黑板上。 )

师:这么短的时间内就能写出这么多乘积是1的两个数,不错。

师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?

生:无数个

出示例7

师:那请你们来帮帮忙,找出乘积是1的两个数。

(学生个别回答)

师:你们找的这些与之前写的所有算式都有怎样的共同点?

生:乘积都是1。

师:你知道吗?揭示意义】 教师板书:乘积是1的两个数叫做互为倒数。生齐读。

师:黑板上所写的`两个数的积都是1 ,所以他们互为倒数。比如3/8和8/3的乘积是1 ,我们就说3/8和8/3互为倒数。(师板书3/8和8/3互为倒数) 【示范说】

师:3/8和8/3互为倒数!我们还可以怎么说呢。

生:3/8的倒数是8/3;8/3的倒数是3/8。

师:为什么乘积是1的两个数不直接说是倒数,而要说“互为”倒数呢?“互为”是什么意思呢?你是怎样理解这两个字?

生1:“互为”是指两个数的关系。

生2:“互为”说明这两个数的关系是相互依存的。

师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。以前我们学过这种两数间相互依存关系的知识吗?

师:2/5和5/2的积是1,我们就说??(生齐说)

师:7/10和10/7的乘积是1,这两个数的关系可以怎么说?请您告诉你的同桌。

(学生活动)

(小结:刚才我们就认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)

探索求一个倒数的方法

师:非常好!我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。

生1:互为倒数的两个数分子和分母调换了位置。

师:同意吗?

生:同意。

师:根据这一特点你能写出一个数的倒数吗?

生:能

师:试一试!

师在黑板上出示3/5 7/2 ,写出它们的倒数。

师:那5(0.1)的倒数是什么?它可是没有分子和分母呀? 还有1 又1/8呢?

生:把5看成是分母是1的分数,再把分子分母调换位置。

求小数的倒数的方法:小数 求带分数的倒数的方法:带分数

三、 分数倒数。 倒数。 假分数

师:那1 的倒数是几呢?(学生很快就说出来了,并说明了理由)

0的倒数呢?

师:为什么?

生1:因为0和任何数相乘都得0,不可能得1。

师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3、??把这此分数的分子分母调换位置后。。。。。。(生齐:分母就为0了,而分母不可以为0。) 师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

生1:求一个数的倒数,只要把分子分母调换位置。

生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。

生3:1 的倒数是1,0没有倒数。

(生齐读求一个数倒数的方法。 )

四、巩固练习

1、打开书,阅读课本P34,把你认为重要的划起来。

2、完成练一练。

(1)学生在书上完成,教师巡视,请同学板演。注意学生的书写格式是否正确。

(2)发现一学生书写有误,与该生交流。

(3)用展台展示该生的错误。

师:这样写可以吗?(4/11=11/4)

生:不可以!

师:为什么?

生1:比如4/11的倒数是11/4,4/11是真分数,11/4另一个是假分数,它们是不可能相等的。

(4)师:对,互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。

3、小游戏:同桌互相出一题,对方说出答案。

4、先说说下面每组数的倒数,再看看你能发现什么?

(1)3/4的倒数是( ) (2)9/7的倒数是( )

2/5的倒数是( )10/3的倒数是( )

4/7的倒数是( ) 6/5的倒数是( )

(3)1/3的倒数是( ) (4)3的倒数是( )

1/10的倒数是( )9的倒数是( )

1/13的倒数是( )14的倒数是( )

由学生说出各数的倒数。然后

师:请你仔细观察,看能从中发现什么,发现得越多越好。

师:小组间可以先互相说一说。

汇报:

生1:我从第一组中发现真分数的倒数都是假分数。

生2:我从第二组中发现假分数的倒数是真分数或者假分数。

生3:真分数的倒数都小于1,假分数的倒数大于1。 假分数的倒数也可能等于1。 生4:我发现分子是1的分数。

4、填空:

7×( )=15/2×( )=( )×3又2/3=0.17×( )=1

五、课堂小结

1、小结:今天我们学习了什么???

2、学了倒数有什么用呢?

大家课后可去思考一下。

板书设计

倒数的认识

乘积是1的两个数互为倒数 1的倒数是1。0没有倒数。

0.1的倒数10 5的倒数是5 1又1/8的倒数是8/9 。

(0.1=1/10) (5=5/1) (1又1/8=9/8)

求小数的倒数的方法: 求带分数的倒数的方法:带分数

分数假分数 倒数。 倒数。

16、倒数的认识教学反思

《倒数的认识》是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生只有学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。

《倒数的认识》这一课的核心内容是“倒数的意义和求法”。“倒数的意义”属于概念的教学,我认为,只有让学生关注基础知识本身,让学生在深入剖析“倒数的意义”的过程中,学会数学思考,体会解决问题所带来的成功体验,才能使学习真正成为学生的需要。

本节课我在设计教学时力求充分发挥学生学习的主动性和积极性,引导学生自主探索与交流合作中再现知识发生的过程,提高学生的观察分析和概括归纳的能力,实现知识技能与学生智能的同步发展。通过这节课的实际教学,结合新课标,也给了我不少启示。

启示一:处理好“教教材”和“用教材”的关系:

1、在课的导入部分,联系学生熟悉的生活情景,由倒影和一些有趣的文字引出本节课所要探究的问题――倒数,从形象直观上感受颠倒位置,既激发了学生的探究兴趣,为学生学习新知识做了充分的准备,为学生较好理解倒数的意义做了铺垫。

2、变例题教学为学生自学课本,发现求一个数的倒数的方法,然后通过举例,检查学生的掌握情况,再总结出求一个数的倒数的方法。

3、丰富练习的形式。在充分利用教材的练习同时,我还适当地补充了练习的内容,使学生在练习中巩固,在练习中提高。比如设计的“比较大小”,在比较大小之后,让学生找找其中的规律,为接下来的分数除法做铺垫。“猜一猜“,不仅用到了倒数的知识,也联系到前面学的分数乘法应用题。

启示二:相信学生,处理好扶与放的关系:

1、给学生独立思考的时间,相信学生能具有独立思考的能力,教学中每一个问题的提出,要使学生不是坐等听别人讲,而是能养成先自己积极思考的习惯。

2、给学生合作学习的机会;当学生有困惑时,教师可以充分发挥学生集体智慧,引导学生小组合作、互相学习、互相交流,在合作中交流、在合作中提高、在合作中解决困惑。在教学中,我对于探求“整数有没有倒数”、“0和1有没有倒数”、“小数有没有倒数”这几个环节,充分发挥学生合作交流的作用,去共同解决问题。

17、倒数的认识教学反思

“倒数的认识”是在学习了分数乘法的基础上进行教学的,主要是为后面学习分数除法做准备。这一课时的内容主要是让学生理解倒数的意义和会求一个数的倒数,学生只有学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。

因考虑本节课的教学难度不太,所以在设计本课的教学时,我采取了学生自主学习为主的`教学方式,首先创设了一个问题情境引入课题,让学生带着问题进入课堂,后出示自学提纲,让学生根据提示自学课本内容,给学生充分独立思考的机会,然后将自学所得在小组内交流,最后在进行全班交流。整个教学过程充分体现学生学习的主动性和积极性,让学生在自主探索与交流合作中再现知识发生的过程,提高学生的观察分析和概括归纳的能力,实现知识技能与学生智能的同步发展。反思整个教学过程,我有以下几点体会:

成功之处:

1、创设问题情境,激发学生的学习积极性。课始,我以一道和本课内容相关的智力题引入教学,很快就激起了学生的探究欲望,在学生努力思考而没有答案的情况下,我提示了课题,使学生的学习的探究兴趣达到了最高点,大大地提高了教学效果。

2、给学生充分合作学习的时间。随着新课改的实施,新的教学理念冲击着我们的课堂,学生是课堂的主人,课堂上要充分发挥学生学习的积极性和主动性的思想,()使我们不得不退出“主角”地位,努力当好“配角”,在教学本课时,我努力扮演好自己的角色,给学生充分的自主学习和自主交流的时间,让学生在小组合作中,互相学习、互相交流,在合作中交流、在合作中提高、在合作中解决困惑,在碰撞中体验到成功的快乐。通过合作学习使学生的语言表达能力、思维能力、与同伴沟通的能力都得到了很大的提高,使学生的主人翁地位得以体现。

不足之处:

1、在教学倒数的定义时,只是让学生口头回答了一次,教师未曾板书,也未做强调,致使后面教学中由于概念不清,而加大了学生理解的难度。

2、灵活掌控课堂的能力还不强。在导入新课的环节中,所用时间稍多,致使最后没有完成本节课的教学任务,小组讨论的时间也不是很充足。

3、教学中有些环节处理不够细致。如:学生出现问题时,不能及时发现,及时纠正。

努力方向:

1、真正确立以学生为主体的观念,让学生成为课堂的主角,成为发现知识的成功者。

2、要努力突出每一课的教学重点和难点,对于概念性的内容更要做到这一点,不能让学生概念不清。

3、要从细节上下功夫,无论从备课上,还是讲课中,都要力求完美。

4、要在平时的教学中,多学习,多积累,多锻炼,使自己对课堂的灵活掌控能力能有大的提高。

18、倒数的认识教学反思

“倒数的认识”一课是学习分数除法的基础。这节课的主要目标是让学生认识倒数的'意义,知道什么是倒数,并会求一个数的倒数。这节课我在上课时,课堂气氛比较活跃,学生知识掌握得较好,通过这节课的实际教学,结合新课标,给了我不少启示。

第一,从联系学生熟悉的生活情景入手,让学生用简单的话介绍一下自己的同桌,学生通过实际的对话“我是…的同桌”、“是我的同桌”、“…和…互为同桌”,让学生从直观上理解“互为”同桌的意思,分散了教学难点,为学习“互为倒数”做了一个铺垫。而且课堂气氛也活跃了,融洽了师生关系。

第二,相信学生。给学生独立思考的时间,让学生自己自学课本,通过书中的算式,自己发现什么叫做倒数;同时也给学生合作学习的机会,探求“整数的倒数怎么求”、“0和1有没有倒数”、“小数有没有倒数”时,让学生小组合作学习,互相交流,得出结论,能够群策群力地解决问题。

第三,练习的设计多种多样,我不仅设计了关于倒数的基础练习,也有让学生“跳一跳,就能摘到苹果”的提高题,让学生在练习中巩固,在练习中提高。最后,我出示了一副回文对联“客上天然居,居然天上客;僧过大佛寺,寺佛大过僧。”让学生体会到数学之美。

19、数学倒数的认识教学反思

倒数的认识这部分内容是在分数乘法的基础上进行教学的。学习倒数主要是为后面学习分数除法作准备的。因为一个数除以一个分数的计算方法是归结为乘这个分数的倒数。所以学好这部分内容对之后学习分数除法是至关重要的。由于我是六年级数学组第一单元的把关教师,本课又是我的单元课,所以在课前,看了不少关于这课的教学设计,觉得是五花八门,各有所长,最终根据我班学生的学习情况,设计了教学方案,取得了不错的教学效果,主要表现在以下几点:

一、特色引入,直奔主题。

在本课的引入中,我通过谈话让学生了解对比相互的反义词及位置交换,再通过让男女学生计算小黑板不同的两组乘法算式,观察积的特点与算式中两个因数的特点,直接对倒数形成了初步的认识,更明白了只要调换分子与分母的位置就会得到一个新的分数。然后让学生对具有这样特点的两个分数起名,学生不约而同的叫它们倒数。为了使学生深入了解倒数的意义,我引导学生举了大量分数的例子,并通过观察、计算等方法使学生明确“互为倒数的两个数的乘积是1”、“倒数的两个数只是把分子和分母的位置进行调换”、更让我高兴的是学生能注意到“倒数是相互依存的”。抓住学生的这一发现,我引导他们很快就总结出了倒数的概念——乘积是1的两个数叫做互为倒数。在强调重点时,学生发现在数学上还有像倒数这样的情况,如约数和倍数,倒数也是相互依存的。

二、让学生在碰撞中体验到成功的快乐。

著名教育家苏霍姆林斯基说过:“在人的内心深处,都有一种根深蒂固的需要,那就是希望自己是一个发现者和探索者。”而在儿童的心理,这种需求特别强烈。为了符合学生的这一心理特点,我在教学求一个数的倒数的方法上让学生以生问生答的形式进行,在我的鼓励下,学生开始是提出整数、真分数、假分数,接着想到带分数、小数,进一步想到两个特例1和0,面对特殊的0和1这两个数时,学生们出现了小小的“争执”。有人认为:“0和1有倒数。”有人认为:“0和1没有倒数。”对于学生的“争执”我没有直接介入,而是引导他们互相说说自己的理由,在他们的交流中,学生们达成了一致的认识:0没有倒数,1的倒数是它本身。并且在说明理由时,学生还认为“0不能做分母,所以0没有倒数”,“0乘任何数都得0,不可能得到1”这两个理由,拓展了我所提供给学生的知识内容,学生在深入思考中得出结论,这就是学生学习的成果。我觉得,这样做不仅增添了课堂活力,而且还让学生经历了探索的过程,解决了学生的困惑,更让学生体会到了成功的快乐。

本课我最大的收获是学生自己进行了充分的辩论,让我惊喜万分,感到十分高兴,我觉的是本课最大的收获,在学生的辩论在,连我都充满了激情。我想,在教学中需要我充分预设,放开手脚,这样定能让我的课堂焕发精彩。

20、数学倒数的认识教学反思

《倒数的认识》这一课的核心内容是“倒数的意义和求法”。“倒数的意义”属于概念的教学,我认为,只有让学生关注基础知识本身,让学生在深入剖析“倒数的意义”的过程中,学会数学思考,体会解决问题所带来的成功体验,才能使学习真正成为学生的需要。

本节课我在设计教学时力求充分发挥学生学习的主动性和积极性,引导学生自主探索与交流合作中再现知识发生的过程,提高学生的观察分析和概括归纳的能力,实现知识技能与学生智能的同步发展。通过这节课的实际教学,结合新课标,也给了我不少启示。

启示一:处理好“教教材”和“用教材”的关系:

1、在课的导入部分,联系学生熟悉的生活情景,由倒影和一些有趣的文字引出本节课所要探究的问题――倒数,从形象直观上感受颠倒位置,既激发了学生的探究兴趣,为学生学习新知识做了充分的准备,为学生较好理解倒数的意义做了铺垫

2、变例题教学为学生自学课本,发现求一个数的倒数的方法,然后通过举例,检查学生的掌握情况,再总结出求一个数的倒数的方法。

3、丰富练习的形式。在充分利用教材的练习同时,我还适当地补充了练习的内容,使学生在练习中巩固,在练习中提高。比如设计的“比较大小”,在比较大小之后,让学生找找其中的规律,为接下来的分数除法做铺垫。“猜一猜“,不仅用到了倒数的知识,也联系到前面学的分数乘法应用题。

启示二:相信学生,处理好扶与放的关系:

1、给学生独立思考的时间,相信学生能具有独立思考的能力,教学中每一个问题的提出,要使学生不是坐等听别人讲,而是能养成先自己积极思考的习惯。

2、给学生合作学习的机会;当学生有困惑时,教师可以充分发挥学生集体智慧,引导学生小组合作、互相学习、互相交流,在合作中交流、在合作中提高、在合作中解决困惑。在教学中,我对于探求“整数有没有倒数”、“0和1有没有倒数”、“小数有没有倒数”这几个环节,充分发挥学生合作交流的作用,去共同解决问题。