导航菜单

​定积分的计算方法总结

定积分的计算方法总结

定积分是高数中的一个重点内容,以下是小编收集的相关总结,仅供大家阅读参考!

定积分

1、定积分解决的典型问题

image.png

(1)曲边梯形的面积(2)变速直线运动的路程

2、函数可积的充分条件

●定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。

●定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。

3、定积分的若干重要*质

●*质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。

●推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx。

●推论|∫abf(x)dx|≤∫ab|f(x)|dx。

●*质设m及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m(b-a)≤∫abf(x)dx≤m(b-a),该*质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。

●*质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点ξ,使下式成立:∫abf(x)dx=f(ξ)(b-a)。

4、关于广义积分

设函数f(x)在区间[a,b]上除点c(a<c<b)外连续,而在点c的邻域内无界,如果两个广义积分∫acf(x)dx与∫cbf(x)dx都收敛,则定义∫abf(x)dx=∫acf(x)dx+∫cbf(x)dx,否则(只要其中一个发散)就称广义积分∫abf(x)dx发散。

定积分的应用

1、求平面图形的面积(曲线围成的面积)

●直角坐标系下(含参数与不含参数)

●极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式s=r2θ/2)

●旋转体体积(由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成)(且体积v=∫abπ[f(x)]2dx,其中f(x)指曲线的方程)

●平行截面面积为已知的立体体积(v=∫aba(x)dx,其中a(x)为截面面积)

●功、水压力、引力

●函数的平均值(平均值y=1/(b-a)*∫abf(x)dx)

第2篇:定积分计算方法总结

导语:学习需要总结,只有总结,才能真正学有所成。以下是定积分计算方法总结,供各位阅读和参考。

一、定积分的计算方法

1.利用函数奇偶*

2.利用函数周期*

3.参考不定积分计算方法

二、定积分与极限

1.积和式极限

2.利用积分中值定理或微分中值定理求极限

3.洛必达法则

4.等价无穷小

三、定积分的估值及其不等式的应用

1.不计算积分,比较积分值的大小

1)比较定理:若在同一区间[a,b]上,总有

f(x)>=g(x),则>=()dx

2)利用被积函数所满足的不等式比较之a)

b)当0<x<兀/2时,2/兀<<1

2.估计具体函数定积分的值

积分估值定理:设f(x)在[a,b]上连续,且其最大值为m,最小值为m则

m(b-a)<=<=m(b-a)

3.具体函数的定积分不等式证法

1)积分估值定理

2)放缩法

3)柯西积分不等式

≤ %

4.抽象函数的定积分不等式的证法

1)拉格朗日中值定理和导数的有界*

2)积分中值定理

3)常数变易法

4)利用泰勒公式展开法

四、不定积分计算方法

1.凑微分法

2.裂项法

3.变量代换法

1)三角代换

2)根幂代换

3)倒代换

4.*后积分

5.有理化

6.和差化积法

7.分部积分法(反、对、幂、指、三)

8.降幂法

第3篇:定积分的计算方法小结

为大家献上定积分的计算方法小结的论文,欢迎各位数学毕业的同学阅数列通项公式的求法!

摘要:本文通过对定积分计算方法的总结以达到更进一步提高高职学生学习高等数学的积极*,提高解题能力,增强分析问题解决问题的技能。

关键词:定积分;原函数;对称*;奇偶*

在高职高专院校高等数学的教学过程中,微积分是一个很重要的内容。其中定积分是函数微积分的重要组成部分。本文中给出几种常用定积分的计算方法,这是本人在数学实践中的一些总结,仅供参考。

1.原函数方法

此方法先求出被积函数的原函数,然后借助于积分的基本公式把原积分转化成原函数在积分区间端点上函数之差。设f(x)在[a,b]上连续,且,则。

例1求。

解因为x2是x/2的一个原函数,所以。

2.分部积分法

设f(x),g(x)在[a,b]上有连续的导数,则。

例2求。

解在分布积分公式中取f(x)=Inx,g(x)=x,于是有。

3.换元法

设f(x)在[a,b]上连续,在上有连续的导数,其中且在上不变号。则

例3求

解令u=1+2x,有

4.利用奇偶函数*质计算积分

奇偶函数在对称区间上的积分*质:

例4求。

解因为x/2在[-2,2]上是奇函数,所以。

5.利用周期函数*质计算积分

周期函数的*质:设T为一个正的常数,对x均有:f(x+T)=f(x)成立,又设a为任意实数,n为正实数,则有:。

例5求。

解是以为周期的周期函数。于是有

计算定积分的方法还有很多,如泰勒级数法,递推公式法,欧拉公式等。以上给出的方法是比较基本常用的方法,比较符合学生的知识功底,适合高职学生学习掌握。

   参考文献:

[1]严子谦等.数学分析[M].*:高等教育出版社.2004.

[2]盛祥耀.高等数学[M].*:高等教育出版社.2011.

第4篇:求定积分的方法的总结

定积分是积分的一种,是函数f(x)在区间[a,b]上的积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有!如下是小编给大家整理的求定积分的方法的总结,希望对大家有所作用。

1.知识网络

2.方法总结

(1)定积分的定义:分割—近似代替—求和—取极限

(2)定积分几何意义:

①f(x)dx(f(x)0)表示y=f(x)与x轴,x=a,x=b所围成曲边梯形的面积ab

②f(x)dx(f(x)0)表示y=f(x)与x轴,x=a,x=b所围成曲边梯形的面积的相a

反数

(3)定积分的基本*质:

①kf(x)dx=kf(x)dxaabb

②[f1(x)f2(x)]dx=f1(x)dxf2(x)dxaaa

③f(x)dx=f(x)dx+f(x)dxaac

(4)求定积分的方法:baf(x)dx=limf(i)xini=1nbbbbbcb

①定义法:分割—近似代替—求和—取极限②利用定积分几何意义

③微积分基本公式f(x)F(b)-F(a),其中F(x)=f(x)ba

一、不定积分计算方法

1.凑微分法

2.裂项法

3.变量代换法

1)三角代换

2)根幂代换

3)倒代换

4.*后积分

5.有理化

6.和差化积法

7.分部积分法(反、对、幂、指、三)

8.降幂法

二、定积分的计算方法

1.利用函数奇偶*

2.利用函数周期*

3.参考不定积分计算方法

三、定积分与极限

1.积和式极限

2.利用积分中值定理或微分中值定理求极限

3.洛必达法则

4.等价无穷小

四、定积分的估值及其不等式的应用

1.不计算积分,比较积分值的大小

1)比较定理:若在同一区间[a,b]上,总有

f(x)>=g(x),则>=()dx

2)利用被积函数所满足的不等式比较之a)

b)当0<x<兀/2时,2/兀<<1

2.估计具体函数定积分的值

积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为m则

M(b-a)<=<=M(b-a)

3.具体函数的定积分不等式证法

1)积分估值定理

2)放缩法

3)柯西积分不等式

4.抽象函数的定积分不等式的证法

1)拉格朗日中值定理和导数的有界*

2)积分中值定理

3)常数变易法

4)利用泰勒公式展开法

五、变限积分的导数方法

第5篇:不定积分解题方法总结

总结,是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料。下面就是小编整理的不定积分解题方法总结,一起来看一下吧。

前言

在今天这一期推送里,我们来讲讲不定积分的技巧。在微积分/分析这门学科当中,计算是一项非常基本的能力,而在计算的过程当中有许多我们可以应用到的技巧。本文适合所有有一定微积分基础知识的人:对于学过一些微积分的高考同学,这篇文章可以做为一篇课外读物,加深一下你们对积分的理解;对于国外体制内,选修了相应微积分课程的同学们,你们可能对于其中的一部分或大部分概念感到比较熟悉;这篇文章可以作为你们对于相关学科内容的一个巩固。不论怎样,我都真诚地希望这篇文章能够对目标群体的读者有一定的帮助,而由于本人水平所限,如果有任何错误,还吝请大家指正。

正文

第6篇:极限的计算方法总结

“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。下面为大家整理的是极限的计算方法总结,希望对大家有所帮助~

1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须*拆分后极限依然存在,e的x次方-1或者(1+x)的a次方-1等价于ax等等。全部熟记(x趋近无穷的时候还原成无穷小)。

2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。首先他的使用有严格的使用前提!必须是x趋近而不是n趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,lnx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,lnx趋近于0)。

3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)e的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。

4、面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母!!!看上去复杂,处理很简单!

5、无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数,可能只需要知道它的范围结果就出来了!

6、夹逼定理(主要对付的是数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

7、等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)。

8、各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数。

9、求左右极限的方式(对付数列极限)例如知道xn与xn+1的关系,已知xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,因为极限去掉有限项目极限值不变化。

10、两个重要极限的应用。这两个很重要!对第一个而言是x趋近0时候的sinx与x比值。第2个就如果x趋近无穷大,无穷小都有对有对应的形式(第2个实际上是用于函数是1的无穷的形式)(当底数是1的时候要特别注意可能是用地两个重要极限)

11、还有个方法,非常方便的方法,就是当趋近于无穷大时候,不同函数趋近于无穷的速度是不一样的!x的x次方快于x!快于指数函数,快于幂数函数,快于对数函数(画图也能看出速率的快慢)!!当x趋近无穷的时候,他们的比值的极限一眼就能看出来了。

12、换元法是一种技巧,不会对单一道题目而言就只需要换元,而是换元会夹杂其中。

13、假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的。

14、还有对付数列极限的一种方法,就是当你面对题目实在是没有办法,走投无路的时候可以考虑转化为定积分。一般是从0到1的形式。

15、单调有界的*质,对付递推数列时候使用*单调*!

16、直接使用求导数的定义来求极限,(一般都是x趋近于0时候,在分子上f(x加减某个值)加减f(x)的形式,看见了要特别注意)(当题目中告诉你f(0)=0时候f(0)导数=0的时候,就是暗示你一定要用导数定义!

函数是表皮,函数的*质也体现在积分微分中。例如他的奇偶*质他的周期*。还有复合函数的*质:

1、奇偶*,奇函数关于原点对称偶函数关于轴对称偶函数左右2边的图形一样(奇函数相加为0);

2、周期*也可用在导数中在定积分中也有应用定积分中的函数是周期函数积分的周期和他的一致;

3、复合函数之间是自变量与应变量互换的关系;

4、还有个单调*。(再求0点的时候可能用到这个*质!(可以导的函数的单调*和他的导数正负相关):o再就是总结一下间断点的问题(应为一般函数都是连续的所以间断点是对于间断函数而言的)间断点分为第一类和第二类剪断点。第一类是左右极限都存在的(左右极限存在但是不等跳跃的的间断点或者左右极限存在相等但是不等于函数在这点的值可取的间断点;第二类间断点是震荡间断点或者是无穷极端点(这也说明极限即使不存在也有可能是有界的)。

数学成绩是长期积累的结果,因此准备时间一定要充分。首先对各个知识点做深入细致的分析,注意抓考点和重点题型,同时逐步进行一些训练,积累解题思路,这有利于知识的消化吸收,彻底弄清楚有关知识的纵向与横向联系,转化为自己真正掌握的东西。