初一数学角的认识知识点总结精选
1、角的组成:角是由一个顶点、两条边组成的。
2、角的大小与角的两条边的长短没有关系,跟角的开口大小有关系:角的开口越大,角就越大;开口越小,角就越小。
3、角的分类,按照角的大小可以分成:锐角、直角、钝角(平角、周角本学期不需要掌握,孩子知道即可,课上讲过)
4、锐角:比直角小的角叫锐角,也就是:锐角(角的度数不要求掌握,了解即可)
直角:度数是90的角叫直角,也就是:直角=90度。
钝角:比直角大比平角小的角叫钝角,也就是:90钝角
5、做题时,如果让画出一个什么角,画完后一定要有一个表示角的小标志,即直角是一个直的小折线,钝角锐角都是小弧线。是否标出顶点和边要看题目具体要求。
6、做题时,如果具体到某个角上,一定要用23等表示,不能只填序号。
7、在方格纸上画角时,选定方格纸的一个横竖线交叉点为角的顶点,另一边就沿着横线或竖线画,这样画清楚干净,而且直角更好画,不易丢分。画完后一定要有角的折线或弧线标志,如上5所述
特别说明:由于孩子们年龄小,目前对于角的概念书上没有做严密准确的说明,比如什么叫直角,钝角的定义也不完全正确,所以在课堂上我简单说明了一下,角是按照大小来分类的,对于角的大小,本学期没有涉及角的度数这一概念,因此只能笼统地说一下让孩子们知道,尤其要找准三角板上的直角,比直角大的角是钝角,但比钝角大的还有平角,它是180度,两条边成一条直线,顶点在中间(平角是角,有顶点和边,不是线)。周角的度数是360度,就是角的两条边重合在一起了,看上去就是一条边,样子是射线状的,但是在这条线上会有一个圆弧线来*它是周角。
关于角一部分的知识,需要孩子们熟练掌握:
1、角的组成。
2、角的大小和什么有关系和什么没关系,具体关系怎样。
3、角分为哪三类?分别是什么,能够用三角板的直角进行对比判断。
小编为大家整理的初一数学角的认识知识点总结相关内容大家一定要牢记,以便不断提高自己的数学成绩,祝大家学习愉快!
第2篇:角的认识初一数学知识点总结
1、角的组成:角是由一个顶点、两条边组成的。
2、角的大小与角的两条边的长短没有关系,跟角的开口大小有关系:角的开口越大,角就越大;开口越小,角就越小。
3、角的分类,按照角的大小可以分成:锐角、直角、钝角(平角、周角本学期不需要掌握,孩子知道即可,课上讲过)
4、锐角:比直角小的角叫锐角,也就是:锐角<90°(角的度数不要求掌握,了解即可)
直角:度数是90°的角叫直角,也就是:直角=90°。
钝角:比直角大比平角小的角叫钝角,也就是:90°<钝角<180°
5、做题时,如果让画出一个什么角,画完后一定要有一个表示角的小标志,即直角是一个直的小折线,钝角锐角都是小弧线
是否标出顶点和边要看题目具体要求。
6、做题时,如果具体到某个角上,一定要用∠1∠2∠3等表示,不能只填序号。
7、在方格纸上画角时,选定方格纸的一个横竖线交叉点为角的顶点,另一边就沿着横线或竖线画,这样画清楚干净,而且直角更好画,不易丢分。画完后一定要有角的折线或弧线标志,如上5所述。
特别说明:由于孩子们年龄小,目前对于角的概念书上没有做严密准确的说明,比如什么叫直角,钝角的定义也不完全正确,所以在课堂上我简单说明了一下,角是按照大小来分类的,对于角的大小,本学期没有涉及“角的度数”这一概念,因此只能笼统地说一下让孩子们知道,尤其要找准三角板上的直角,比直角大的角是钝角,但比钝角大的还有平角,它是180°,两条边成一条直线,顶点在中间(平角是角,有顶点和边,不是线)。周角的度数是360°,就是角的两条边重合在一起了,看上去就是一条边,样子是射线状的,但是在这条线上会有一个圆弧线来*它是周角。
关于角一部分的知识,需要孩子们熟练掌握:
1、角的组成。
2、角的大小和什么有关系和什么没关系,具体关系怎样。
3、角分为哪三类?分别是什么,能够用三角板的直角进行对比判断。
第3篇:初一数学认识三角形知识点
读书使学生认识丰富多彩的世界,获取信息和知识,拓展视野。接下来小编为大家精心准备了认识三角形知识点,希望大家喜欢!
一、三角形的基本概念:
1、三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形。
三角形abc记作:△abc。
2、相关概念:
三角形的边:组成三角形的三条线段。记作:ab、ac、bc。
三角形的内角:每两条边所组成的角(简称三角形的角)。
记作:∠a、∠b、∠c
3、三角形的分类:
二、三角形三边关系:
1、三角形任何两边的和大于第三边。
几何语言:若a、b、c为△abc的三边,则a+b>c,a+c>b,b+c>a.
想一想:这个在实际解题中该怎样应用?
2、三边关系也可表述为:三角形任何两边的差都小于第三边。
三、三角形的内角和定理:
三角形三个内角的和等于1800。
几何语言:△abc中,∠a+∠b+∠c=1800。
四、三角形的三线:
问题1、如何作三角形的高线、角平分线、中线?
问题2、三角形的高线、角平分线、中线各有多少条,它们的交点在什么位置?
问题3、三角形的中线有什么应用?
第4篇:初一数学知识点精选
1.同类项——所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。同类项与系数无关,与字母排列的顺序也无关。
2.合并同类项:把多项式中的同类项合并成一项叫做合并同类项。即同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
3.整式的加减:有括号的先算括号里面的,然后再合并同类项。
4.幂的运算:
5.整式的乘法:
1)单项式与单项式相乘法则:把它们的系数、同底数幂分别相乘,其余只在一个单项式里含有的字母连同它的指数作为积的因式。
2)单项式与多项式相乘法则:用单项式去乘多项式的每一项,再把所得的积相加。
3)多项式与多项式相乘法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
6.整式的除法
1)单项式除以单项式:把系数与同底数幂分别相除作为上的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
2)多项式除以单项式:把这个多项式的每一项除以单项式,再把所得的商相加。
四、因式分解——把一个多项式化成几个整式的积的形式
1)提公因式法:(公因式——多项式各项都含有的公共因式)吧公因式提到括号外面,将多项式写成因式乘积的形式。取各项系数的最大公约数作为因式的系数,取相同字母最低次幂的积。公因式可以是单项式,也可以是多项式。
2)公式法:a.平方差公式;b.完全平方公式
第5篇:初一的数学知识点总结
梦想也许今天无法实现,明天也不行,但是只要今天的自己比昨天的自己足够努力学习初一数学知识点,就会距离梦想近一步。下面是小编为大家整编的初一数学知识点整理,大家快来看看吧。
初一数学必考知识点:角的种类
角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。
锐角:大于0°,小于90°的角叫做锐角。
直角:等于90°的角叫做直角。
钝角:大于90°而小于180°的角叫做钝角。
平角:等于180°的角叫做平角。
优角:大于180°小于360°叫优角。
劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。
周角:等于360°的角叫做周角。
负角:按照顺时针方向旋转而成的角叫做负角。
正角:逆时针旋转的角为正角。
0角:等于零度的角。
余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。
对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。
初一数学必考知识点:一元一次方程组的解法
一般步骤:
第一步:去分母,在方程两边同乘以所有分母的最小公倍数.注意:分子要加括号,不要漏乘不含有分母的项;
第二步:去括号,先去小括号,再去中括号,最后去大括号.注意:不要漏乘括号内各项,若括号前面是“-”,去括号后括号内各项都要变号;
第三步:移项,把含有未知数的项移到方程的一边,其他项移到另一边.注意:移项要变号,不移的项不变号,移项时不要漏项;
第四步:合并同类项,把方程化为ax=b(a≠0)的形式.注意:系数相加,字母部分不变;
第五步:系数化为1,把方程两边同除以未知数的系数a,得到方程的解x={frac{b}{a}}(a≠0).注意:不要把分子、分母位置颠倒.
初一数学必考知识点:整式的加减
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。
2.系数:单项式中的数字因数叫做这个单项式的系数。所有字母的指数之和叫做这个单项式的次数。任何一个非零数的零次方等于1.
3.多项式:几个单项式的和叫多项式。
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
5.常数项:不含字母的项叫做常数项。
6.多项式的排列
(1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
7.多项式的排列时注意:
(1)由于单项式的项,包括它前面的*质符号,因此在排列时,仍需把每一项的*质符号看作是这一项的一部分,一起移动。
(2)有两个或两个以上字母的多项式,排列时,要注意:
a.先确认按照哪个字母的指数来排列。
b.确定按这个字母向里排列,还是向外排列。
(3)整式:
单项式和多项式统称为整式。
8.多项式的加法:
多项式的加法,是指多项式的同类项的系数相加(即合并同类项)。
9.同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。
10.合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。
初一数学知识点整理
第一章有理数
1.1正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negativenumber)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positivenumber)(根据需要,有时在正数前面也加上“+”)。
1.2有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rationalnumber)。
通常用一条直线上的点表示数,这条直线叫数轴(numberaxis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(oppositenumber)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。
1.4有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(basenumber),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significantdigit)。
第二章一元一次方程
2.1从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linearequationwithoneunknown)。 解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的*质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.2从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。
第三章图形认识初步
3.1多姿多彩的图形
几何体也简称体(solid)。包围着体的是面(surface)。
3.2直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。
3.3角的度量
1度=60分1分=60秒1周角=360度1平角=180度
3.4角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(piementaryangle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementaryangle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等。
初一数学知识点整理4-6章
第四章数据的收集与整理
收集、整理、描述和分析数据是数据处理的基本过程。
第五章相交线与平行线
5.1相交线
对顶角(verticalangles)相等。
过一点有且只有一条直线与已知直线垂直(perpendicular)。
连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。
5.2平行线
经过直线外一点,有且只有一条直线与这条直线平行(parallel)。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
直线平行的条件:
两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。
5.3平行线的*质
两条平行线被第三条直线所截,同位角相等。
两条平行线被第三条直线所截,内错角相等。
两条平行线被第三条直线所截,同旁内角互补。
判断一件事情的语句,叫做命题(proposition)。
第六章平面直角坐标系
6.1平面直角坐标系
含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a和b组成的数对,叫做有序数对(orderedpair)。
初一数学知识点整理7-10章
第七章三角形
7.1与三角形有关的线段
三角形(triangle)具有稳定*。
7.2与三角形有关的角
三角形的内角和等于180度。
三角形的一个外角等于与它不相邻的两个内角的和。
三角形的一个外角大于与它不相邻的任何一个内角
7.3多边形及其内角和
n边形内角和等于:(n-2)?180度
多边形(polygon)的外角和等于360度。
第八章二元一次方程组
8.1二元一次方程组
方程中含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程(linearequationsoftwounknowns)。
把两个二元一次方程合在一起,就组成了一个二元一次方程组(systemoflinearequationsoftwounknowns)。
使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
8.2消元
将未知数的个数由多化少、逐一解决的想法,叫做消元思想。
第九章不等式与不等式组
9.1不等式
用小于号或大于号表示大小关系的式子,叫做不等式(inequality)。
使不等式成立的未知数的值叫做不等式的解。
能使不等式成立的x的取值范围,叫做不等式的解的*,简称解集(solutionset)。
含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式(linearinequalityofoneunknown)。
不等式的*质:
不等式两边加(或减)同一个数(或式子),不等号的方向不变。
不等式两边乘(或除以)同一个正数,不等号的方向不变。
不等式两边乘(或除以)同一个负数,不等号的方向改变。
三角形中任意两边之差小于第三边。
三角形中任意两边之和大于第三边。
9.3一元一次不等式组
把两个一元一次不等式合在起来,就组成了一个一元一次不等式组(linearinequalitiesofoneunknown)。
第十章实数
10.1平方根
如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根(arithmeticsquareroot),2是根指数。
a的算术平方根读作“根号a”,a叫做被开方数(radicand)。
0的算术平方根是0。
如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根(squareroot)。
求一个数a的平方根的运算,叫做开平方(extractionofsquareroot)。
10.2立方根
如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根(cuberoot)。
求一个数的立方根的运算,叫做开立方(extractionofcuberoot)。
10.3实数
无限不循环小数又叫做无理数(irrationalnumber)。
有理数和无理数统称实数(realnumber)。
第6篇:初一数学知识点的总结
《初一数学(上)》是辽宁教育出版社出版的一本图书,作者金祥瑛/王晓友/王燮明/石忠民。下面大家就随小编一起去看看关于初一数学知识点的总结。
第一章有理数
1、大于0的数是正数。
2、有理数分类:正有理数、0、负有理数。
3、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数)
4、规定了原点,单位长度,正方向的直线称为数轴。
5、数的大小比较:
①正数大于0,0大于负数,正数大于负数。
②两个负数比较,绝对值大的反而小。
6、只有符号不同的两个数称互为相反数。
7、若a+b=0,则a,b互为相反数
8、表示数a的点到原点的距离称为数a的绝对值
9、绝对值的三句:正数的绝对值是它本身,
负数的绝对值是它的相反数,0的绝对值是0。
10、有理数的计算:先算符号、再算数值。
11、加减:①正+正②大-小③小-大=-(大-小)④-☆-О=-(☆+О)
12、乘除:同号得正,异号的负
13、乘方:表示n个相同因数的乘积。
14、负数的奇次幂是负数,负数的偶次幂是正数。
15、混合运算:先乘方,再乘除,后加减,同级运算从左到右,有括号的先算括号。
16、科学计数法:用ax10n表示一个数。(其中a是整数数位只有一位的数)
17、左边第一个非零的数字起,所有的数字都是有效数字。
【知识梳理】
1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;
几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.
5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。实数的运算基础是有理数运算,有理数的一切运算*质和运算律都适用于实数运算。正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
一元一次方程知识点
知识点1:等式的概念:用等号表示相等关系的式子叫做等式.
知识点2:方程的概念:含有未知数的等式叫方程,方程中一定含有未知数,而且必须是等式,二者缺一不可.
说明:代数式不含等号,方程是用等号把代数式连接而成的式子,且其中一定要含有未知数.
知识点3:一元一次方程的概念:只含有一个未知数,并且未知数的次数是1的方程叫一元一次方程.任何形式的一元一次方程,经变形后,总能变成形为ax=b(a≠0,a、b为已知数)的形式,这种形式的方程叫一元一次方程的一般式.注意a≠0这个重要条件,它也是判断方程是否是一元一次方程的重要依据.
例2:如果(a+1)+45=0是一元一次方程,则a________,b________.
分析:一元一次方程需要满足的条件:未知数系数不等于0,次数为1.∴a+1≠0,2b-1=1.∴a≠-1,b=1.
知识点4:等式的基本*质(1)等式两边加上(或减去)同一个数或同一个代数式,所得的结果仍是等式.即若a=b,则a±m=b±m.
(2)等式两边乘以(或除以)同一个不为0的数或代数式,所得的结果仍是等式.
即若a=b,则am=bm.或.此外等式还有其它*质:若a=b,则b=a.若a=b,b=c,则a=c.
说明:等式的*质是解方程的重要依据.
例3:下列变形正确的是()
a.如果ax=bx,那么a=bb.如果(a+1)x=a+1,那么x=1
c.如果x=y,则x-5=5-yd.如果则
分析:利用等式的*质解题.应选d.
说明:等式两边不可能同时除以为零的数或式,这一点务必要引起同学们的高度重视.
知识点5:方程的解与解方程:使方程两边相等的未知数的值叫做方程的解,求方程解的过程叫解方程.
知识点6:关于移项:⑴移项实质是等式的基本*质1的运用.
⑵移项时,一定记住要改变所移项的符号.
知识点7:解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、将未知数的系数化为1.具体解题时,有些步骤可能用不上,有些步骤可以颠倒顺序,有些步骤可以合写,以简化运算,要根据方程的特点灵活运用.
例4:解方程.
分析:灵活运用一元一次方程的步骤解答本题.
解答:去分母,得9x-6=2x,移项,得9x-2x=6,合并同类项,得7x=6,系数化为1,得x=.
说明:去分母时,易漏乘方程左、右两边代数式中的某些项,如本题易错解为:去分母得9x-1=2x,漏乘了常数项.
知识点8:方程的检验
检验某数是否为原方程的解,应将该数分别代入原方程左边和右边,看两边的值是否相等.
注意:应代入原方程的左、右两边分别计算,不能代入变形后的方程的左边和右边.
三、一元一次方程的应用
一元一次方程在实际生活中的应用,是很多同学在学习一元一次方程过程中遇到的一个棘手问题.下面是对一元一次方程在实际生活中的应用的一个专题介绍,希望能为同学们的学习提供帮助.
一、行程问题
行程问题的基本关系:路程=速度×时间,
速度=,时间=.
1.相遇问题:速度和×相遇时间=路程和
例1甲、乙二人分别从a、b两地相向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知a、b两地相距1000米,问甲、乙二人经过多长时间能相遇?
解:设甲、乙二人t分钟后能相遇,则
(200+300)×t=1000,
t=2.
答:甲、乙二人2钟后能相遇.
2.追赶问题:速度差×追赶时间=追赶距离
例2甲、乙二人分别从a、b两地同向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知a、b两地相距1000米,问几分钟后乙能追上甲?解:设t分钟后,乙能追上甲,则
(300-200)t=1000,
t=10.
答:10分钟后乙能追上甲.
3.航行问题:顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度.例3甲乘小船从a地顺流到b地用了3小时,已知a、b两地相距90千米.水流速度是20千米/小时,求小船在静水中的速度.
解:设小船在静水中的速度为v,则有
(v+20)×3=90,
v=10(千米/小时).
答:小船在静水中的速度是10千米/小时.
二、工程问题
工程问题的基本关系:①工作量=工作效率×工作时间,工作效率=,工作时间=;②常把工作量看作单位1.
例4已知甲、乙二人合作一项工程,甲25天*完成,乙20天*完成,甲、乙二人合作5天后,甲另有事,乙再单独做几天才能完成?
解:设甲再单独做x天才能完成,有
(+)×5+=1,
x=11.
答:乙再单独做11天才能完成.
三、环行问题
环行问题的基本关系:同时同地同向而行,第一次相遇:快者路程-慢者路程=环行周长.同时同地背向而行,第一次相遇:甲路程+乙路程=环形周长.
例5王丛和张兰绕环行跑道行走,跑道长400米,王丛的速度是200米/分钟,张兰的速度是300米/分钟,二人如从同地同时同向而行,经过几分钟二人相遇?
解:设经过t分钟二人相遇,则
(300-200)t=400,
t=4.
答:经过4分钟二人相遇.
四、数字问题
数字问题的基本关系:数字和数是不同的,同一个数字在不同数位上,表示的数值不同.
例6一个两位数,个位数字比十位数字小1,这个两位数的个位十位互换后,它们的和是33,求这个两位数.
解:设原两位数的个位数字是x,则十位数字为x+1,根据题意,得
[10(x-1)+x]+[10x+(x+1)]=33,
x=1,则x+1=2.
∴这个数是21.
答:这个两位数是21.
五、利润问题
利润问题的基本关系:①获利=售价-进价②打几折就是原价的十分之几例7某商场按定价销售某种电器时,每台获利48元,按定价的9折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等,该电器每台进价、定价各是多少元?
解:设该电器每台的进价为x元,则定价为(48+x)元,根据题意,得6[0.9(48+x)-x]=9[(48+x)-30-x],
x=162.
48+x=48+162=210.
答:该电器每台进价、定价各分别是162元、210元.
六、浓度问题
浓度问题的基本关系:溶液浓度=,溶液质量=溶质质量+溶剂质量,溶质质量=溶液质量×溶液浓度
例8用“84”消毒液配制*液对白*衣物进行消毒,要求按1∶200的比例进行稀释.现要配制此种*液4020克,则需要“84”消毒液多少克?
解:设需要“84”消毒液x克,根据题意得
=,
x=20.
答:需要“84”消毒液20克.
七、等积变形问题
例1用直径为90mm的圆柱形玻璃杯(已装满水,且水足够多)向一个内底面积为131×131mm2,内高为81mm的长方体铁盒倒水,当铁盒装满水时,玻璃杯中水的高度下降了多少?(结果保留π)
第9/11页
分析:玻璃杯里倒掉的水的体积和长方体铁盒里所装的水的体积相等,所以等量关系为:
玻璃杯里倒掉的水的体积=长方体铁盒的容积.
解:设玻璃杯中水的高度下降了xmm,根据题意,得
经检验,它符合题意.
八、利息问题
例2储户到银行存款,一段时间后,银行要向储户支付存款利息,同时银行还将代扣由储户向国家缴纳的利息税,税率为利息的20%.
(1)将8500元钱以一年期的定期储蓄存入银行,年利率为2.2%,到期支取时可得到利息________元.扣除利息税后实得________元.
(2)小明的父亲将一笔资金按一年期的定期储蓄存入银行,年利率为2.2%,到期支取时,扣除所得税后得本金和利息共计71232元,问这笔资金是多少元?
(3)王红的爸爸把一笔钱按三年期的定期储蓄存入银行,假设年利率为3%,到期支取时扣除所得税后实得利息为432元,问王红的爸爸存入银行的本金是多少?
分析:利息=本金×利率×期数,存几年,期数就是几,另外,还要注意,实得利息=利息-利息税.
解:(1)利息=本金×利率×期数=8500×2.2%×1=187元.
实得利息=利息×(1-20%)=187×0.8=149.6元.
(2)设这笔资金为x元,依题意,有x(1+2.2%×0.8)=71232.
解方程,得x=70000.
经检验,符合题意.
答:这笔资金为70000元.
(3)设这笔资金为x元,依题意,得x×3×3%×(1-20%)=432.
解方程,得x=6000.
经检验,符合题意.
答:这笔资金为6000元.