导航菜单

​初中圆的知识点总结

初中圆的知识点总结

导语:圆的知识点是初中数学图形知识的一个重要组成部分,在中考中也占据很大的比重。因而学好圆的知识点对初中生很重要。为了方便大家学习,小编特地为大家整理了初中圆的知识点总结,希望对你有帮助。

大家都知道:圆是定点的距离等于定长的点的*。接下来导师为大家带来的是初中数学知识点总结之圆,请大家认真记忆了。

image.png


1、圆的内部可以看作是圆心的距离小于半径的点的*

2、圆的外部可以看作是圆心的距离大于半径的点的*

3、同圆或等圆的半径相等

4、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

5、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

6、到已知角的两边距离相等的点的轨迹,是这个角的平分线

7、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

8、定理不在同一直线上的三点确定一个圆。

9、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

10、推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

11、推论2圆的两条平行弦所夹的弧相等

大家看过初中数学知识点总结之圆后,想必同学们都已经熟记了吧。接下来还有更多更全的初中数学知识讯息尽在。

圆是以圆心为对称中心的中心对称图形。那么接下来导师为大家带来的是初中数学知识点总结之圆,请大家认真记忆了。

1、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

2、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

3、定理一条弧所对的圆周角等于它所对的圆心角的一半

4、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

5、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

6、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

7、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

8、①直线l和⊙o相交dr

9、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

10、切线的*质定理圆的切线垂直于经过切点的半径

大家要熟记:圆的外切四边形的两组对边的和相等。那么接下来导师为大家带来的是初中数学知识点总结之圆,请大家认真记忆了。

推论1经过圆心且垂直于切线的直线必经过切点

推论2经过切点且垂直于切线的直线必经过圆心

切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

弦切角定理弦切角等于它所夹的弧对的圆周角

推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等

初中数学知识点总结之圆的知识已经总结完毕,同学们都已经掌握要领了吧。接下来还有更多更全的初中数学知识讯息尽在。

各位热爱数学的初中同学们,的小编通过认真分析和详细整合,为大家带来了丰富营养的数学知识大餐之初中知识点学习口诀,请同学们认真记忆,做好笔记啦。更多更全的初中知识资讯尽在。

圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系。

正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前.

经过分点做切线,切线相交n个点.n个交点做顶点,外切正n边形便出现.正n边形很美观,它有内接,外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果n值为偶数,中心对称很方便.正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n个整,依此计算便简单.

第2篇:初中圆知识点精华总结

初中关于圆的知识是重要内容,以下是小编收集的相关知识点,仅供大家阅读参考!

1.不在同一直线上的三点确定一个圆。

2.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

推论2圆的两条平行弦所夹的弧相等

3.圆是以圆心为对称中心的中心对称图形

4.圆是定点的距离等于定长的点的*

5.圆的内部可以看作是圆心的距离小于半径的点的*

6.圆的外部可以看作是圆心的距离大于半径的点的*

7.同圆或等圆的半径相等

8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

9.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

10.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

11定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

12.①直线l和⊙o相交d

②直线l和⊙o相切d=r

③直线l和⊙o相离dr

13.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

14.切线的*质定理圆的切线垂直于经过切点的半径

15.推论1经过圆心且垂直于切线的直线必经过切点

16.推论2经过切点且垂直于切线的直线必经过圆心

17.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

18.圆的外切四边形的两组对边的和相等外角等于内对角

19.如果两个圆相切,那么切点一定在连心线上

20.①两圆外离dr+r②两圆外切d=r+r

③.两圆相交r-rr)

④.两圆内切d=r-r(rr)⑤两圆内含dr)

第3篇:初中圆知识点总结

圆是初中几何课程中很重要的内容之一,圆的知识点相当多,下面就由小编为大家收集了初中圆知识点总结,以供大家参考!

1.不在同一直线上的三点确定一个圆。

2.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

推论2圆的两条平行弦所夹的弧相等

3.圆是以圆心为对称中心的中心对称图形

4.圆是定点的距离等于定长的点的*

5.圆的内部可以看作是圆心的距离小于半径的点的*

6.圆的外部可以看作是圆心的距离大于半径的点的*

7.同圆或等圆的半径相等

8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

9.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

10.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

11定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

12.①直线l和⊙o相交d

②直线l和⊙o相切d=r

③直线l和⊙o相离d>r

13.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

14.切线的*质定理圆的切线垂直于经过切点的半径

15.推论1经过圆心且垂直于切线的直线必经过切点

16.推论2经过切点且垂直于切线的直线必经过圆心

17.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

18.圆的外切四边形的两组对边的和相等外角等于内对角

19.如果两个圆相切,那么切点一定在连心线上

20.①两圆外离d>r+r

②两圆外切d=r+r

③两圆相交r-rr)

④两圆内切d=r-r(r>r)⑤两圆内含dr)

21.定理相交两圆的连心线垂直平分两圆的公共弦

22.定理把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

23.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

24.正n边形的每个内角都等于(n-2)×180°/n

25.定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

26.正n边形的面积sn=pnrn/2p表示正n边形的周长

27.正三角形面积√3a/4a表示边长

28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

29.弧长计算公式:l=n兀r/180

30.扇形面积公式:s扇形=n兀r^2/360=lr/2

31.内公切线长=d-(r-r)外公切线长=d-(r+r)

32.定理一条弧所对的圆周角等于它所对的圆心角的一半

33.推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

34.推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

35.弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r

第4篇:初中数学《圆》知识点总结

数学概念是学习数学的基础,如果概念不清,往往导致认识、理解偏差,解题出错。以下是为大家分享的初中数学《圆》知识点总结,供大家参考借鉴,欢迎浏览!

1.不在同一直线上的三点确定一个圆。

2.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

推论2圆的两条平行弦所夹的弧相等

3.圆是以圆心为对称中心的中心对称图形

4.圆是定点的距离等于定长的点的*

5.圆的内部可以看作是圆心的距离小于半径的点的*

6.圆的外部可以看作是圆心的距离大于半径的点的*

7.同圆或等圆的半径相等

8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

9.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

10.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

11定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

12.①直线L和⊙O相交d

②直线L和⊙O相切d=r

③直线L和⊙O相离d>r

13.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

14.切线的*质定理圆的切线垂直于经过切点的半径

15.推论1经过圆心且垂直于切线的直线必经过切点

16.推论2经过切点且垂直于切线的直线必经过圆心

17.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

18.圆的外切四边形的两组对边的和相等外角等于内对角

19.如果两个圆相切,那么切点一定在连心线上

20.①两圆外离d>R+r

②两圆外切d=R+r

③两圆相交R-rr)

④两圆内切d=R-r(R>r)⑤两圆内含dr)

21.定理相交两圆的连心线垂直平分两圆的公共弦

22.定理把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

23.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

24.正n边形的每个内角都等于(n-2)×180°/n

25.定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

26.正n边形的面积Sn=pnrn/2p表示正n边形的周长

27.正三角形面积√3a/4a表示边长

28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

29.弧长计算公式:L=n兀R/180

30.扇形面积公式:S扇形=n兀R^2/360=LR/2

31.内公切线长=d-(R-r)外公切线长=d-(R+r)

32.定理一条弧所对的圆周角等于它所对的圆心角的一半

33.推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

34.推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

35.弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r

第5篇:初中数学圆知识点总结

圆是初中几何课程中很重要的内容之一,圆的知识点相当多,以下是小编为大家整理的初中数学圆知识点总结,希望能够帮助到大家!

初中数学圆知识点总结(一)

圆的定义:

圆是一种几何图形。当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆。

在一个个平面内,线段oa绕它固定的一个端点o旋转一周,另一个端点a随之旋转所形成的图形叫做圆,固定的端点o叫做圆心,线段oa叫做半径。

相关定义:

1在同一平面内,到定点的距离等于定长的点的*叫做圆。这个定点叫做圆的圆心。图形一周的长度,就是圆的周长。

2连接圆心和圆上的任意一点的线段叫做半径,字母表示为r。

3通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。直径所在的直线是圆的对称轴。

4连接圆上任意两点的线段叫做弦。最长的弦是直径,直径是过圆心的弦。

5圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,优弧是用三个字母表示。小于半圆的弧称为劣弧,劣弧用两个字母表示。半圆既不是优弧,也不是劣弧。优弧是大于180度的弧,劣弧是小于180度的弧。

6由两条半径和一段弧围成的图形叫做扇形。

7由弦和它所对的一段弧围成的图形叫做弓形。

8顶点在圆心上的角叫做圆心角。

9顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

10圆周长度与圆的直径长度的比值叫做圆周率。它是一个无限不循环小数,通常用π表示,π=3.14159265……在实际应用中,一般取π≈3.14。

11圆周角等于相同弧所对的圆心角的一半。

12圆是一个正n边形(n为无限大的正整数),边长无限接近0但不等于0。

圆的*定义:

圆是平面内到定点的距离等于定长的点的*,其中定点是圆心,定长是半径。

圆的字母表示:

以点o为圆心的圆记作“⊙o”,读作o”。

圆—⊙;

半径—r或r(在环形圆中外环半径表示的字母);

弧—⌒;

直径—d;

扇形弧长—l;

周长—c;

面积—s。

圆的*质:

(1)圆是轴对称图形,其对称轴是任意一条通过圆心的直线。

圆也是中心对称图形,其对称中心是圆心。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。

逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。

(2)有关圆周角和圆心角的*质和定理

①在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。

②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。

直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

圆心角计算公式:θ=(l/2πr)×360°=180°l/πr=l/r(弧度)。

即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。

③如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。

(3)有关外接圆和内切圆的*质和定理

①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;

②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。

③r=2s△÷l(r:内切圆半径,s:三角形面积,l:三角形周长)。

④两相切圆的连心线过切点。(连心线:两个圆心相连的直线)

⑤圆o中的弦pq的中点m,过点m任作两弦ab,cd,弦ad与bc分别交pq于x,y,则m为xy之中点。

(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。

(5)弦切角的度数等于它所夹的弧的度数的一半。

(6)圆内角的度数等于这个角所对的弧的度数之和的一半。

(7)圆外角的度数等于这个角所截两段弧的度数之差的一半。

(8)周长相等,圆面积比长方形、正方形、三角形的面积大。

点、线、圆与圆的位置关系:

点和圆位置关系

①p在圆o外,则po>r。

②p在圆o上,则po=r。

③p在圆o内,则0≤po

反过来也是如此。

直线和圆位置关系

①直线和圆无公共点,称相离。ab与圆o相离,d>r。

②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。ab与⊙o相交,d

③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。ab与⊙o相切,d=r。(d为圆心到直线的距离)

圆和圆位置关系

①无公共点,一圆在另一圆之外叫外离,在之内叫内含。

②有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。

③有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

设两圆的半径分别为r和r,且r〉r,圆心距为p,则结论:外离p>r+r;外切p=r+r;内含p

内切p=r-r;相交r-r

初中数学圆知识点总结(二)

1.圆的周长c=2πr=或c=πd

2.圆的面积s=πr2

3.扇形弧长l=圆心角(弧度制)×r=n°πr/180°(n为圆心角)

4.扇形面积s=nπr2/360=lr/2(l为扇形的弧长)

5.圆的直径d=2r

6.圆锥侧面积s=πrl(l为母线长)

7.圆锥底面半径r=n°/360°l(l为母线长)(r为底面半径)

圆的方程:

1、圆的标准方程:在平面直角坐标系中,以点o(a,b)为圆心,以r为半径的圆的标准方程是

(x-a)2+(y-b)2=r2。

特别地,以原点为圆心,半径为r(r>0)的圆的标准方程为x2+y2=r2。

2、圆的一般方程:方程x2+y2+dx+ey+f=0可变形为(x+d/2)2+(y+e/2)2=(d2+e2-4f)/4.故有:

①当d2+e2-4f>0时,方程表示以(-d/2,-e/2)为圆心,以(√d2+e2-4f)/2为半径的圆;

②当d2+e2-4f=0时,方程表示一个点(-d/2,-e/2);

③当d2+e2-4f<0时,方程不表示任何图形。

3、圆的参数方程:以点o(a,b)为圆心,以r为半径的圆的参数方程是x=a+r*cosθ,y=b+r*sinθ,(其中θ为参数)

圆的端点式:若已知两点a(a1,b1),b(a2,b2),则以线段ab为直径的圆的方程为(x-a1)(x-a2)+(y-b1)(y-b2)=0

圆的离心率e=0,在圆上任意一点的曲率半径都是r。

经过圆x2+y2=r2上一点m(a0,b0)的切线方程为a0·x+b0·y=r2

在圆(x2+y2=r2)外一点m(a0,b0)引该圆的两条切线,且两切点为a,b,则a,b两点所在直线的方程也为a0·x+b0·y=r2。

初中数学圆知识点总结(三)

一)教学知识点

了解不在同一条直线上的三个点确定一个圆,以及过不在同一条直线上的三个点作圆的方法,了解三角形的外接圆、三角形的外心等概念.

(二)能力训练要求

1.经历不在同一条直线上的三个点确定一个圆的探索过程,培养学生的探索能力.

2.通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略.

(三)情感与价值观要求

1.形成解决问题的一些基本策略,体验解决问题策略的多样*,发展实践能力与创新精神.

2.学会与人合作,并能与他人交流思维的过程和结果.

教学重点

1.经历不在同一条直线上的三个点确定一个圆的探索过程,并能掌握这个结论.

2.掌握过不在同一条直线上的三个点作圆的方法.

3.了解三角形的外接圆、三角形的外心等概念.

教学难点

经历不在同一条直线上的三个点确定一个圆的探索过程,并能过不在同一条直线上的三个点作圆.

教学方法

教师指导学生自主探索交流法.

教具准备

投影片三张

第一张:(记作§3.4a)

第二张:(记作§3.4b)

第三张:(记作§3.4c)

教学过程

Ⅰ.创设问题情境,引入新课

[师]我们知道经过一点可以作无数条直线,经过两点只能作一条直线.那么,经过一点能作几个圆?经过两点、三点……呢?本节课我们将进行有关探索.

Ⅱ.新课讲解

1.回忆及思考

投影片(§3.4a)

1.线段垂直平分线的*质及作法.

2.作圆的关键是什么?

[生]1.线段垂直平分线的*质是:线段垂直平分线上的点到线段两端点的距离相等.

作法:如下图,分别以a、b为圆心,以大于ab长为半径画弧,在ab的两侧找出两交点c、d,作直线cd,则直线cd就是线段ab的垂直平分线,直线cd上的任一点到a与b的距离相等.

[师]我们知道圆的定义是:平面上到定点的距离等于定长的所有点组成的图形叫做圆.定点即为圆心,定长即为半径.根据定义大家觉得作圆的关键是什么?

[生]由定义可知,作圆的问题实质上就是圆心和半径的问题.因此作圆的关键是确定圆心和半径的大小.确定了圆心和半径,圆就随之确定.

2.做一做(投影片§3.4b)

(1)作圆,使它经过已知点a,你能作出几个这样的圆?

(2)作圆,使它经过已知点a、b.你是如何作的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段ab有什么关系?为什么?

(3)作圆,使它经过已知点a、b、c(a、b、c三点不在同一条直线上).你是如何作的?你能作出几个这样的圆?

[师]根据刚才我们的分析已知,作圆的关键是确定圆心和半径,下面请大家互相交换意见并作出解答.

[生](1)因为作圆实质上是确定圆心和半径,要经过已知点a作圆,只要圆心确定下来,半径就随之确定了下来.所以以点a以外的任意一点为圆心,以这一点与点a所连的线段为半径就可以作一个圆.由于圆心是任意的.因此这样的圆有无数个.如图(1).

(2)已知点a、b都在圆上,它们到圆心的距离都等于半径.因此圆心到a、b的距离相等.根据前面提到过的线段的垂直平分线的*质可知,线段的垂直平分线上的点到线段两端点的距离相等,则圆心应在线段ab的垂直平分线上.在ab的垂直平分线上任意取一点,都能满足到a、b两点的距离相等,所以在ab的垂直平分线上任取一点都可以作为圆心,这点到a的距离即为半径.圆就确定下来了.由于线段ab的垂直平分线上有无数点,因此有无数个圆心,作出的圆有无数个.如图(2).

(3)要作一个圆经过a、b、c三点,就是要确定一个点作为圆心,使它到三点的距离相等.因为到a、b两点距离相等的点的*是线段ab的垂直平分线,到b、c两点距离相等的点的*是线段bc的垂直平分线,这两条垂直平分线的交点满足到a、b、c三点的距离相等,就是所作圆的圆心.

因为两条直线的交点只有一个,所以只有一个圆心,即只能作出一个满足条件的圆.

[师]大家的分析很有道理,究竟应该怎样找圆心呢?

3.过不在同一条直线上的三点作圆.

投影片(§3.4c)

作法图示

1.连结ab、bc

2.分别作ab、bc的垂直

平分线de和fg,de和

fg相交于点o

3.以o为圆心,oa为半径作圆

⊙o就是所要求作的圆

他作的圆符合要求吗?与同伴交流.

[生]符合要求.

因为连结ab,作ab的垂直平分线ed,则ed上任意一点到a、b的距离相等;连结bc,作bc的垂直平分线fg,则fg上的任一点到b、c的距离相等.ed与fg的满足条件.

[师]由上可知,过已知一点可作无数个圆.过已知两点也可作无数个圆,过不在同一条直线上的三点可以作一个圆,并且只能作一个圆.

不在同一直线上的三个点确定一个圆.

4.有关定义

由上可知,经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆(circumcircleoftriangle),这个三角形叫这个圆的内接三角形.

外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心(circumcenter).

Ⅲ.课堂练习

已知锐角三角形、直角三角形、钝角三角形,分别作出它们的外接圆,它们外心的位置有怎样的特点?

解:如下图.

o为外接圆的圆心,即外心.

锐角三角形的外心在三角形的内部,直角三角形的外心在斜边上,钝角三角形的外心在三角形的外部.

Ⅳ.课时小结

本节课所学内容如下:

1.经历不在同一条直线上的三个点确定一个圆的探索过程.

方法.

3.了解三角形的外接圆,三角形的外心等概念.

Ⅴ.课后作业

习题3.6

Ⅵ.活动与探究

如下图,cd所在的直线垂直平分线段ab.怎样使用这样的工具找到圆形工件的圆心?

解:因为a、b两点在圆上,所以圆心必与a、b两点的距离相等,又因为和一条线段的两个端点距离相等的点在这条线段的垂直平分线上,所以圆心在cd所在的直线上.因此使用这样的工具可以作出圆形工件的任意两条直径.它们的交点就是圆心.

第6篇:初中数学知识点总结:圆

初三学习的知识是初中三年学习的汇总,为了方便大家更好地复习,以下是小编搜索整理初中数学知识点总结:圆,欢迎大家阅读!

1.不在同一直线上的三点确定一个圆。

2.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

推论2圆的两条平行弦所夹的弧相等

3.圆是以圆心为对称中心的中心对称图形

4.圆是定点的距离等于定长的点的*

5.圆的内部可以看作是圆心的距离小于半径的点的*

6.圆的外部可以看作是圆心的距离大于半径的点的*

7.同圆或等圆的半径相等

8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

9.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

10.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

11定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

12.①直线L和⊙O相交d

②直线L和⊙O相切d=r

③直线L和⊙O相离d>r

13.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

14.切线的*质定理圆的切线垂直于经过切点的半径

15.推论1经过圆心且垂直于切线的直线必经过切点

16.推论2经过切点且垂直于切线的直线必经过圆心

17.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

18.圆的外切四边形的两组对边的和相等外角等于内对角

19.如果两个圆相切,那么切点一定在连心线上

20.①两圆外离d>R+r②两圆外切d=R+r

③.两圆相交R-rr)

④.两圆内切d=R-r(R>r)⑤两圆内含dr)

21.定理相交两圆的连心线垂直平分两圆的公共弦

22.定理把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

23.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

24.正n边形的每个内角都等于(n-2)×180°/n

25.定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

26.正n边形的面积Sn=pnrn/2p表示正n边形的周长

27.正三角形面积√3a/4a表示边长

28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

29.弧长计算公式:L=n兀R/180

30.扇形面积公式:S扇形=n兀R^2/360=LR/2

31.内公切线长=d-(R-r)外公切线长=d-(R+r)

32.定理一条弧所对的圆周角等于它所对的圆心角的一半

33.推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

34.推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

35.弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r